Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article concerns integration and disambiguation of data related to the maritime domain. A developed system is described, which collects and merges data about several maritime-related entities (vessels, vessel types, ports, companies etc.) retrieved from different internet sources and feeds the data into a single database. This process is however not trivial. There are few challenges, which need to be faced to successfully conduct it. Firstly, in different sources, entities may be referenced to in different ways, for example, by using different text strings. Additionally, some of these references may be ambiguous, i.e. potentially the reference may point to more than one entity. To enable efficient analysis of data coming from different sources, such ambiguities must be resolved automatically as a preprocessing step, before the data is uploaded to the database and utilized in further computations. The aim of the disambiguation process is to assign artificial, unique identifiers to each entity and then, if possible, automatically assign these identifiers to each data item related to a given entity. In the article, developed methods for resolving such ambiguities are discussed and their evaluation is presented.
Rocznik
Tom
Strony
465--477
Opis fizyczny
Bibliogr. 19 poz. rys.
Twórcy
autor
- Poznań University of Economics and Business, Poznań, Poland
autor
- Poznań University of Economics and Business, Poznań, Poland
autor
- Poznań University of Economics and Business, Poznań, Poland
Bibliografia
- 1 International Maritime Organisation: The International Aeronautical and Maritime Search and Rescue (IAMSAR) Manual. IMO/ICAO, London (2013)
- 2 el Pozo, F., Dymock, A., Feldt, L., Hebrard, P., di Monteforte, F.S.: Maritime surveillance in support of csdp. Technical report, European Defence Agency (2010)
- 3 Angerman, W.S.: Coming full circle with boyd’s ooda loop ideas: An analysis of innovation diffusion and evolution. Technical report, DTIC Document (2004)
- 4 Vassiliadis, P.: A survey of extract–transform–load technology. International Journal of Data Warehousing and Mining (IJDWM) 5(3) (2009) 1–27
- 5 Abramowicz, W., Eiden, G., Małyszko, J., Stróżyna, M., We˛cel, K.: SIMMO Project. Deliverable 1.2 Report on selected internet data sources, defined cooperation models and intelligence analysis scenarios. Research report, Poznan´ University of Economics, LuxSpace Sarl (2015) 6
- 6 Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity measures. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’03, New York, NY, USA, ACM (2003) 39–48 Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4) (2000) 3–13
- 7 Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4) (2000) 3–13
- 8 Alberga, C.N.: String similarity and misspellings. Commun. ACM 10(5) (May 1967) 302– 313
- 9 Jaro, M.A.: Advances in record‐linkage methodology as applied to matching the 1985 census of tampa, florida. Journal of the American Statistical Association 84(406) (1989) 414–420
- 10 Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. Knowledge and Data Engineering, IEEE Transactions on 19(1) (2007) 1–16
- 11 Wentland, W., Knopp, J., Silberer, C., Hartung, M.: Building a multilingual lexical resource for named entity disambiguation, translation and transliteration. In: LREC. (2008)
- 12 Vespe, M., Sciotti, M., Battistello, G.: Multi‐sensor autonomous tracking for maritime surveillance. In: Radar, 2008 International Conference on, IEEE (2008) 525–530
- 13 Kazemi, S., Abghari, S., Lavesson, N., Johnson, H., Ryman, P.: Open data for anomaly detection in maritime surveillance. Expert Syst. Appl. 40(14) (2013) 5719–5729
- 14 Kaczmarek, T., Węckowski, D. 347. In: Harvesting Deep Web Data through Produser Involvement. IGI Global (2013) 200–221
- 15 Chang, K.C.C., He, B., Li, C., Patel, M., Zhang, Z.: Structured databases on the web: Observations and implications. ACM SIGMOD Record 33(3) (2004) 61–70
- 16 Rhodes, B.J., Bomberger, N.A., Seibert, M., Waxman, A.M.: Maritime situation monitoring and awareness using learning mechanisms. In: Military Communications Conference, 2005. MILCOM 2005. IEEE, IEEE (2005) 646– 652
- 17 Helldin, T., Riveiro, M.: Explanation methods for bayesian networks: review and application to a maritime scenario. In: Proc. of the 3rd Annual Skövde Workshop on Information Fusion Topics (SWIFT 2009). (2009) 11– 16
- 18 Mano, J.P., Georgé, J.P., Gleizes, M.P.: Adaptive multi‐agent system for multi‐sensor maritime surveillance. In: Advances in Practical Applications of Agents and Multiagent Systems. Springer (2010) 285–290
- 19 Ding, Z., Kannappan, G., Benameur, K., Kirubarajan, T., Farooq, M.: Wide area integrated maritime surveillance: An updated architecture with data fusion. In: Proceedings of the Sixth International Conference of Information Fusion, Australia. Volume 2. (2003) 1324– 1333
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aed5b565-7e71-45c9-b65f-67659c776407