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Abstract. The composite materials optimal design 

problem which taking into account the thermal 
characteristics is the part of an actual structural design 
task. A wide range of variety of such material structures 
and the complexity of modeling some physical 
phenomena (such as the phenomenon of those structures 
effective characteristics percolation threshold appearing) 
requires a high level of detail in physico-mathematical 
models. Here, in this paper, were analyzed the role and 
place of physico-mathematical microlevel models in 
problems of composite materials optimal design. The 
methods of such materials representative volume elements 
construction within the model calculations, which are the 
key step in the modeling of complex structures variety, 
also were analyzed. Basing on the usage of finite element 
method for modeling of stationary heat conduction and 
elasticity linear problems was proposed the combined 
formalization of coupled thermoelasticity problems 
simulation method in complex structured composite 
materials, which is especially useful when used in 
engineering applications which provide a high level of 
abstraction. Basing on the analogy method and theory of 
similarity were developed the complex structured 
composite materials microlevel models, which allow one 
to synthesize and then re-use in the problems of 
composite materials optimal design, such effective 
thermal characteristics as thermal conduction coefficient, 
Young's modulus, Poisson's ratio and temperature 
coefficient of linear expansion. This gives the ability to 
avoid of classical complex mathematical homogenization 
processes or real experiments. The method and models 
were successfully implemented by using of high-
performance parallel and distributed computing 
technologies in heterogeneous computing environments, 
as evidenced by the simulation results. 

Key words: composite materials, optimal design, 
microlevel models, finite element method, coupled 
problems, multiphysics problems. 

INTRODUCTION 

The composite materials (CM) optimal design 
problem which taking into account the thermal 
characteristics [1] is the part of an actual structural design 
task. Volumes of research in this field are growing every 
year, as evidenced by the increase in the number of 
published papers. A wide range of variety of such 
material structures [2] and the complexity of modeling 

some physical phenomena (such as the phenomenon of 
those structures effective characteristics percolation 
threshold appearing) requires a high level of detail in 
microlevel physico-mathematical models. To solve the 
described problems is appropriate to use numerical 
modeling techniques, such as finite element method. 

In this paper, one has gotten the further development 
of numerical microlevel effective thermal characteristics 
synthesis models of composite materials with complex 
structure. Basing on the usage of finite element method 
for modeling coupled thermoelasticity problems and 
analogies method were developed microlevel models of 
composite materials. Models allow one to synthesize 
effective thermal characteristics such as thermal 
conduction coefficient, Young's modulus, Poisson's ratio 
and temperature coefficient of linear expansion. The main 
difference from other models is combined formalization 
of coupled multiphysics problems, which allows one to 
simultaneously take into account boundary conditions in 
the form of heat flows, surface loads, given surface 
temperatures and movements, if they are present. This 
approach is especially useful when used in engineering 
applications which provide a high level of abstraction. 
The models successfully implemented by technologies of 
high-performance parallel and distributed computing, 
which opens the possibility of direct effective usage in 
problems of CM optimal design. 

THE ANALYSIS OF RECENT RESEARCHES AND 
PUBLICATIONS 

Microlevel composite materials models 
Composite materials or composites – materials 

composed from two or more components, and have 
specific properties that are different from the properties of 
their component sum [3]. There are two fundamentally 
different approaches of building models in the tasks of 
CM analysis or synthesis – consideration of material as a 
system of interacting elementary physical component, and 
consideration of material as some abstract continuous 
environment. The combination of both approaches in the 
model allows one to define the structural element order 
relative to the entire CM system. Under this order, any 
CM model can be attributed to such classes as empirical, 
structural, microlevel [4, 5]. The most promising in terms 
of research, automation, and further practical use, is the 
microlevel models class that allows one to describe 
irregularities of base elements, and gives the ability to 
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describe real physical and spatial CM structures most 
adequately. Models of this class are using numerical 
methods for solving problems of analysis such as finite 
element method [6 – 8], thus, allow one to cover almost 
the entire range of phenomena known to modern science. 
Here the analysis of physical processes is considered in 
the so-called representative volume element (RVE) [4, 9]. 
Determination of its size is usually carried out by a series 
of numerical experiments [10]. 

In general case, CM optimal design algorithm, which 
is considering microlevel models, consists of the 
following stages: 
1. Pre-design phase [11]: 
 select the model parameters that vary (components, 

structure formation options), 
 set the ranges of variation (maximum or minimum 

allowable concentrations of components, ranges of 
acceptable characteristics), 

 select optimal criteria (a set of characteristics that 
should be optimal – minimum or maximum, 
depending on the specific task). 

2. Optimization phase: 
 formulate optimization problem, basing on pre-

design phase, 
 problem solving: 

o build representative volume element (model of 
the CM structure), 

o do the model analysis by physico-mathematical 
problems numerical simulation, 

o basing on the results, synthesize a set of model 
effective characteristics, 

o check optimality criteria (selected effective 
characteristics), stop or continue the search, 
depending on the result. 

3. The result – solution with optimal (for specific task) 
characteristics. 

Representative volume element construction 
Unlike the mathematical models and homogenization 

methods for constructing effective field as a superposition 
of each composite material constituent element 
contribution (e.g. Hashin polydisperse model [18]), 
microlevel models involve the construction so-called 
representative volume element (RVE) – usually a volume 

3  of heterogeneous material, sufficiently large to 
describe it statistically, i.e. to effectively include a 
sampling of all microstructural heterogeneities that occur 
in the composite. 

Another definition that is used in this paper and 
doesn’t consider possible statistical fluctuations  – the 
smallest composite material volume 3 , for which 
macroscopic representation of spatial characteristics is 
sufficiently accurate model of effective response on 
corresponding outer influence [10]. In construction of the 
RVEs under problems of CM optimal design is 
convenient enough to use the cellular structure models 
[9], in the form of a large number of regular voxel-cells 
that simultaneously represent a regular finite-element 
discretization. Advantages of approach include:  
 simplicity and relatively small number of 

computations in discretization [14, 15]; 
 the possibility of direct usage of domain 

decomposition methods for calculations and 

corresponding effective implementation on devices 
with big number of computing nodes [6]; 

 universality, which allow one to construct in one 
way such composite material complex structure 
models, as a model of random scalar fields, random 
cellular models, models with deterministic 
inclusions, and the combination of these models 
with the ability to build functional transition layers. 

Construction of the RVE is the task of composite 
materials structure modeling that prior to physical 
processes analysis in these materials [12]. Classically, the 
heterogeneous systems microlevel model differential 
balance equations that describe physical processes, 
consider the structure of the CM as a combination of 
component material characteristics that are represented by 
equations coefficients and topology of the material, which 
is described by the integration borders where these 
equations are defined. Pair: 
  ( , ) , ,p p

p

  D D   (1) 

where: pD  – the set of characteristics of p -th 
component, and p  – corresponding geometric area, i.e. 
its topology; completely describes the composite material 
microlevel structure model. By using this formalization, 
the RVE can be conveniently presented as a cubic matrix 
of scalar intensities, i.e. cells that accept scalar values in a 
certain range, for example from 0 to 1. With a large 
number of cells, by defining the intensities intervals as a 
separate composite phases p  and giving them an 
appropriate characteristics set pD , it is possible to 
construct the model of complex structure (Fig. 1).  

OBJECTIVES 

The main objectives of this paper are: development 
of complex structured composite materials microlevel 
models basing on multiphisics problems numerical 
simulation by finite element method, which gives the 
ability to avoid of classical complex mathematical 
homogenization processes or real experiments; as the 
consequence, development of materials effective thermal 
characteristics synthesis models that can be used in the 
problems of composite materials optimal design. 

COMPOSITE MATERIALS ANALYSIS BASING ON PHYSICO-
MATHEMATICAL PROBLEMS NUMERICAL SIMULATION 

The stationary heat conduction linear problem 
Numerical simulation of stationary heat conduction 

problems in CM RVEs is the basis which allows one to 
synthesize the effective thermal conduction coefficient 

eff . A standardized [19, 20] eff  finding method of some 
material sample with thickness d  is taken as the starting 
point: 

 
,

( )
q

eff
q q

d q d q
T T T


 

 
 
   

  (2) 

where: heat flux T q  n , i.e. Neumann boundary 
condition on a RVE side 2q

, and outer environment 

temperature T , i.e. Dirichlet boundary condition on the 
opposite RVE side 2

T
, are known. In fact, there are 
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no boundary conditions on other sides – they are, so-
called, “floating” sides ( 0T  n ): 

 

2 2 2

2 2 2( ( )) 0 0,

( ( )) , ,

( ( )) .

q
q

TT

q

T

T T TT
x y z
TT q q

T T T T

  
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


 

   
       

      



  



x

x n
n

x

L

l

l

  (3) 

It should be noted that the temperature field must be 
uninterrupted between the composite phases. It is 
necessary to specify, so-called, fourth type boundary 
conditions, also called as ideal contact. However, with the 
further numerical problem simulation by finite element 
method, this condition is automatically satisfied by the 
finite-element basis consistency requirement [13], and 
visibly not specified. 

Approximate test solution can be built as: 

 1
( ) ( ) ( ),

M

j j
j

T T T 


 x x x   (4) 

where: jT  – unknown temperature at RVE cells that 
should be found; j  – some simple polynomial basis 
function.  

Putting the test solution into boundary value problem, 
gives residuals: 

 

( ( )) ( ) 0, ( ( )) ( ) ,

( ( )) ( ) ,

q

q

T

T

q

T

T R T R q

T R T











   

 

x x x x

x x

 



L l

l
 (5) 

note that the last residual is exactly matched.  
The best approximation of the true solution 

( ) ( )T  x H  is an orthogonal projection ( )T x  into 
subspace 1 ( ) C H  that is defined by functions  : 

 

( ), ( ) ( ), ( ) 0,

1, 2, , , ,

q q

q

i i

i i

R R

i M

 

 

  



 

  

x x x x


  (6) 

or: 
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x x
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L

l
 (7) 

Smoothness 1C  of the test solution is minimum 
permissible, because in the original equation are 
presenting maximum second order derivatives.  

Resulting expression can be rewritten in a weak form, 
and thus one can weaken the requirements for basis 
functions smoothness ( 1 0   C C ). For example, 
by using the rule of integration by parts and divergence 
theorem, last expression can include Neumann boundary 
conditions, which are natural for it ( q

i i     ): 

 .
q

j ji i

ji
j i

x x y y

dxdydz T q d
z z

  








   
       

 
      




  (8) 

Let change notation to known stiffness matrix and 
loads vector [ ]{ } { }K u f  (brackets – matrix; braces – 
vector). 

Let split RVE 3  into tetrahedral finite 
elements (i.e. simplex elements) 3i , 

1, 2, ,i P  .  

Using the simplex elements is permissible since such 
basis is 0C  smooth and easily consistent with 
neighboring (temperature will be uninterrupted between 
elements). For this is using a simple template method in 
which every four adjacent RVE cells form a cube, which 
can be divided into six tetrahedrons.  

Now all “local” stiffness matrices [ ]iK  and load 
vectors { }if  should be found. For linear simplex finite 
element basis functions are its barycentric coordinates: 

  

4

, , ,1 ,2 ,3 ,4
1

,1 ,2 ,3 ,4

( )

[ ] { } ,

i i j i j i i i i i
j

i i i i i i

T N N N N N

T T T T

 


   

 


T

x

N u
  (9) 

where: 

 
 

1
1 1 1

2 2 2

3 3 3

4 4 4

1
1

[ ] 1 .
1
1

x y z
x y z

x y z
x y z
x y z


 
 
 
 
 
 

N   (10) 

 
a) 

 
b) 

 
c) 

 
d) 

Fig.1. Example of representative volume elements in the form of a 256x256x256  
elements matrix that represents composite materials microlevel structure models:  

a) scalar random fields; b) random ellipsoid particles; c) fibers; d) cellular structures 
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The boundary of any tetrahedron is a triangle – 2D 
simplex. Here can be found each local load vector, for 
example, for firs three nodes of 
tetrahedron:

1 1 2

1

2

3

1
1 11

2
3 2 1

30 0 0

{ } [ ]

0

( )
[ ] .

3
0

q q

i

N N N
q i

N
N

qd q d
N

N
N

q dN dN dN q
N

 
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 
 
      
 
  

 
     
 
  

 

  

T

N

f N

Jac x

 (11) 

 
 

If finite element doesn`t contain boundary triangle, 
its load vector will be empty – local boundary value 
problem is not correct i.e. “floating”, and can’t be solved 
without considering neighbor problems. To take into 
account Dirichlet boundary conditions is enough to 
modify the local system of equations, taking border nodal 
temperature equal to the given T , i.e. exactly satisfy the 

residual TR 
 . 

After recording weak form (8), its weak operator can 
be expressed in matrix form: 

 
[ ] (.) .

x y z
   

       

T

L   (12) 

As a result each local problem can be written as: 

 

   [ ][ ] [ ] [ ][ ] { } { } ,

0 0
[ ] 0 0 .

0 0

i

i i i i i

i

i i

i

dxdydz








 
 

  
 
   
  


TN D N u f

D

L L

  (13) 

Values of each matrix [ ]iD  depends on which 
subarea p  is located the finite element. Expression 
[ ][ ]iNL  gives 3x4 matrix that contains only constants: 

    
[ ] { } { } ,

[ ] [ ][ ] [ ] [ ][ ] .
i i i

i i i i i



 T

K u f

K N D NL L
  (14) 

When all local stiffness matrices and load vectors are 
found, they should be assembled into global SLAE, which 
describes initial boundary value problem (3). The solution 
can be conveniently found by conjugate gradient 
stabilized (to computational errors) method. 

The stationary elasticity linear problem 
Elasticity problem numerical simulation in CM RVEs 

allows one to synthesize effective Young's modulus effE  
and Poisson's ratio eff . Together with the previous, this 
problem is the basis for the coupled thermoelasticity 
problem. Young's modulus can be found as: 

 
, , 0,

( )
x x

eff y z
x x x

d f d f
E f f

u u u 

 
  
   f f f

  (15) 

where: , ,x y zu u u  u  – mechanical displacements along 
coordinate axes , ,x y z ; , ,x y zf f f  f  – components of 
the surface loads, i.e. Neumann boundary condition on a 

RVE side 2f ; xu   – known starting displacement 
along chosen axis, i.e. Dirichlet boundary condition on 
the opposite RVE side 2

u . Note that components 

yu   and zu   are no imposed in fact.  
Poisson's ratio describes object transverse resizing 

under described conditions: 
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x x

u u
u u


 

 
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  (16) 

According to the classical linear elasticity theory  
[21, 22], there is a connection between displacements and 
deformation – strain tensor: 
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 
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uL   (17) 

According to Hooke's law relationship between the 
strain tensor and the stress tensor is expressed through the 
environment characteristics matrix: 

 
 [ ] [ ][ ] [ ][ ]{ },x y z xy xz yz       

T
σ D ε D uL  (18) 

where: 
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  (19) 

Let consider the boundary value problem: 
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 (20) 

In matrix form the basic equation takes the form: 

 
( ( )) 0 [ ] [ ][ ]{ } 0.  Tu x D uL L L   (21) 
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Let construct an approximation by finite element 
method, similar to the previous heat conduction problem. 
One gets the weighted residuals equation: 
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i
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  (22) 

It can also be reduced to a weak form that includes 
Neumann boundary conditions: 
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Unlike the previous problem, the matrix of basis 
functions is sparse. For simplex elements it can be written 
as: 
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wherefrom the expression [ ][ ]NL  for all elements can be 
written as: 
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k k k

b c d
c b d

d b c

a a a ax y z
b b b bx y z
c c c cx y z
d d d dx y z





 
   
  

  
  
   
  
  

   

T

N M M M M

M

L

  (25) 

Last expression again contains only constants and 
that’s why the local 12x12 stiffness matrix finding is a 
trivial task (14). Finding of the local loads vectors differs 
from the previous case in part that the vector expands to 
12 elements – three load components per node, each of 
which should be multiplied by one-third of that 
tetrahedron side area.  

When all local stiffness matrices and load vectors are 
found, they should be assembled into global SLAE, which 
describes initial boundary value problem (20).  

The solution can be conveniently found by conjugate 
gradient stabilized method. 

THE MAIN RESULTS OF THE RESEARCH 

The coupled thermoelasticity problem 
Coupled problems are multiphysics problems and 

usually can be solved in two steps – firstly separately one 
finds a temperature field, and then a displacement field, 
which based on temperature, or vice versa, depending on 
given boundary conditions [23]. 

Here, basing on previously described linear stationary 
heat conduction and elasticity problems, is proposed the 
combined numerical model of thermoelasticity problem 
simulation in composite materials with complex structure, 

that unlike to traditional, gives the ability to take into 
account boundary conditions in the form of heat flows, 
surface loads, given surface temperatures and movements, 
if they are present. Combination is made by using a single 
differential matrix operator. 

This approach is especially useful when used in 
engineering applications which provide a high level of 
abstraction, e.g. FEMLab/COMSOL or FreeFem++ [24]. 

Coupled thermoelasticity problem numerical 
simulation allows one to synthesize an effective thermal 
conduction coefficient eff  and temperature coefficient of 

linear expansion eff  (LCTE). 
The LCTE describes a thermal expansion within solid 

materials, according to which the linear sizes and body 
shape are changing by body temperature change under 
fixed environment pressure. In the general case LCTE can 
be found as: 

 1 ,x
eff

u
d T







  (26) 

with given heat flux q  (Neumann b.c. on 2f ) and 

outer environment temperature T  (Dirichlet b.c. on the 

opposite side 2
u ). In addition, all displacement 

components 0x y zu u u    on 


u , and transverse 

displacements 0y zu u   on flanks, should be limited, 
leaving the ability to deform in only one direction. 

Let build the numerical model. In every point within 
RVE are unknown a value of temperature and 
displacements along coordinate axes:  

( ) u x  { }x y zT u u u T . 
Let combine strain tensor and temperature gradient 

into single tensor: 

 

 [ ]

[ ]{ },

x y z x y z xy xz yz

yx z

y yx x z z

q q q

uu uT T T
x y z x y z

u uu u u u
y x z x z y

      

    
 

     

     
         

T

T

ε

uL

  (27) 

where: [ ]L  – given problem differential operator matrix 
(in weak form), which is equal to: 

 

0 0 0 0 0 0
0 0 0 0 0 0

[ ]
0 0 0 0 0 0
0 0 0 0 0 0

, , .

A B C
A B C

B A C
C A B

A x B y C z

 
 
 
 
 
 
        

T

L   (28) 

Let combine the relation between strain tensor and 
stress tensor (Hooke's law) and between temperature 
gradient and heat flow (Fourier law) by single 
environment characteristics matrix: 
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0

[ ] ,0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A B B
B A B
B B A

C
C

C






 
 
 
 
 
 
 
 
 
 
 
 
 
 

D   (29) 

(1 ) (1 ) (1 2 ),
(1 ) (1 2 ), 2 2 .

A E
B E C E

  
   

   
    

 

Given problem balance differential equations can be 
written as: 
 [ ] [ ][ ]{ } { } 0, T D u XL L   (30) 
where: { }X  – inner heat sources or inner forces. By 
known LCTE   of the body components, can be found 
the inner forces: 

 , , .
1 2 1 2 1 2

E T E T E TX Y Z
x y z

  
  
  

  
     

 (31) 

In other side, the material is warming under 
influences of the stress – it is equivalent to presence of the 
inner heat source that is equal to: 

 ,
1 2 1 2 1 2

yx zuu uE E EQ
x y z

  
  

 
  

     
  (32) 

wherefrom: 
  { } [ ] [ ]{ },Q X Y Z T TX J uL   (33) 
where: { }J  – matrix in form: 

 

0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0

[ ] .
0 1 0 0 0 0 0 0 01 2
0 0 1 0 0 0 0 0 0

E


 
 
 
 
 
 

T

J   (34) 

Now can be written the weighted residual equation: 

 

 

  

[ ] [ ] [ ] [ ]{ }

[ ] [ ] [ ]{ }

{ }[ ] [ ] 0,

i

i

i i

i i i

i i

i
i i i

d

d

d d





 



 


    







 
f f

T T

T T

T T

N D u

N J u

uN N f
n







L L

L   (35) 

which can be reduced to the weak form by including 
Neumann boundary conditions: 

 
   

 

[ ][ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] { } [ ] .

i

i i

i i i

i i i i i

d

d d



 


 




   




 
f

T

T T T

N D N

N J N u N f

L L

L

  (36) 

As in the previous case, the matrix of basis functions 
is 4x16 sparse matrix. Expression [ ][ ]NL  for all elements 
can be written as: 

 1 2 3 4[ ][ ] [ ] ,[ ] ,[ ] ,[ ] ,N M M M ML  

 

0 0 0 0 0 0
0 0 0 0 0 0

[ ] .
0 0 0 0 0 0
0 0 0 0 0 0

k k k

k k k
k

k k k

k k k

b c d
b c d

c b d
d b c

 
 
 
 
 
 

T

M  (37) 

The second term of stiffness matrix describes the 
inner heat force sources. For simplex elements it can be 
found same as loads vector, basing on tetrahedron 
barycentric coordinates, with the difference that the result 
should be multiplied by a quarter of the tetrahedron 
volume: 

 [ ] [ ] [ ][ ]
4 1 2

i

i
i i

Ed 



  

 T TN J NL  

1 2 3 4

1 2 3 3

1 2 3 3

1 2 3 3

[ ] [ ] [ ] [ ] 0
[ ] [ ] [ ] [ ] 0 0 0

, [ ] .
[ ] [ ] [ ] [ ] 0 0 0
[ ] [ ] [ ] [ ] 0 0 0

k k k

k
k

k

k

b c d
b
c
d

   
   
    
   
   
   

M M M M
M M M M

M
M M M M
M M M M

 (38) 

Finding of the local loads vectors differs from the 
previous case in the part that vector expands to 16 
elements, four components (heat flux + loads) per node, 
each of which should be multiplied by one-third of that 
tetrahedron side. When all local stiffness matrices and 
load vectors are found, they should be assembled into 
global SLAE, which describes initial boundary value 
problem (30). 

The feature of this problem is that the differential 
operator and according SLAE are asymmetric, thanks to 
the contribution of inner heat and force sources. Since this 
term in the expression of stiffness matrix is standing with 
a minus sign, one can make sure that the system and its 
differential operator always be positively defined and 
bounded (doesn't give infinity under integration). These 
properties are sufficient for the convergence of 
computational model. An important difference in the 
practical realization is the impossibility of usage such 
approximate SLAE solving method as conjugate gradient 
method that may be used only for symmetric systems. 
However, in this case, can be used the biconjugate 
gradient stabilized method, which is a generalization of 
the previous. 

Effective thermal characteristics synthesis 
Approximate solution of physico-mathematical 

problems in the complex structured CM RVEs allows one 
to synthesize their effective characteristics, i.e. to do the 
homogenization procedure by numerical simulation. For 
this can be used thermoelectricity analogy method and 
theory of similarity [16, 17, 25 – 27]. Let consider the 
problem of non-stationary heat conduction described by 
parabolic equation: 

 2 ,Tc T 



 


  (39) 

where: specific heat capacity c  [J/kg°C], when [J = kg∙ 
m2/s2]; density   [kg/m3]; heat conduction coefficient   
[W/m°С], when [W = kg∙m2/s3]; time   [s]; distance 

, ,x y z , or, ignoring the differential operator, some 
characteristic distance l  [m] and temperature T  [°С]. Let 
find the similarity criterion by reducing the equation to 
non-dimensional: 
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2

0 0 0 0
1 12π , [π ] kg m s С 1.

T
l
T c lc

 




      (40) 

This criterion is known as Fourier criterion. To 
determine the next criterion it can be used the Robin 
boundary conditions (Newton-Richman), i.e. temperature 
driving force: 

 ,T T 





 

n
  (41) 

where:   – heat transfer coefficient [W/m2°С]. Let 
reduce the last equation to non-dimensional: 

 0 0 0 0
2 2π , [π ] kg m s С 1.T l

T
l

 


      (42) 

This criterion is known as Biot criterion. 
Now, the electric conduction problem, which 

describes the commutation in some electrical device, can 
be considered. This problem is also determined by 
parabolic equation [28, 29]: 

 2 ,Uc U



 


  (43) 

where:   – specific electrical conductivity [m–3kg–1s3A2]; 
c  – electric capacity per volume [F/m3 = A2s4kg–1m–5]; 
U  – electric potential [m2kg1s–3A–1]. The corresponding 
similarity criteria for this equation are: 

 
2

1 22π , π .

U
U ll

U Uclc
l

   




      (44) 

By the selection of model (43) parameters, in which 
its similarity criteria are respectively the same for all of 
original (39) similarity criteria, the problems be similar 
and analogical. This condition is easy to perform in 
numerical mathematical models. Expansion the analogy 
on stationary problem is trivial. 

Let consider the modification process of continuous 
system to its discrete analog. To ensure the 
unambiguousness of the conditions and matching of third 
similarity theorem [25], it is necessary to analyze the 
geometric properties of both systems. It can be considered 
the linear two-dimensional simplex elements in the 
problem of stationary heat conduction, for example. 
Stiffness matrix describes the relation between element 
nodes: 
    [ ] [ ][ ] [ ] [ ][ ] .d 

TK N D NL L   (45) 
It can be noted that coefficients of gradients matrix 

[ ][ ]NL  have direct geometric meaning – element side 
projections on the coordinate axes: 

 

1 1 1 1

2 2 2 2

3 3 3 3

2 2
1 1 1 2 2 2 1 3 1 3

2 2
1 2 1 2 2 2 2 3 2 3

2 2
1 3 1 3 2 3 2 3 3 3

01 1[ ]
02 2

+
+ .

4
+

b c b c
b c b c
b c b c

b c b b c c b b c c
b b c c b c b b c c
b b c c b b c c b c






   
                  

  
        

T

K

  (46) 

The triangle area can be written by the last matrix 
coefficients, e.g. by taking a first node as the basis: 

 
1 1

2 1 2 1 3 3
2 2

3 1 3 1 2 2
3 3

1
2 1 .

1

x y
x x y y c b

x y
x x x y c b

x y

  
   

  
  (47) 

By repeating these steps for the other nodes one gets: 
 1 2 2 1 1 3 3 1 2 3 3 22 .b c b c b c b c b c b c         (48) 

Taking into account the last expression, relationship 
between element nodes can be expressed by 
conductivities Y , or inverse to them values – resistors R : 

1 2 1 2
1,2 2,1 1,2

1,2 1 2 2 1

1 1[ ] [ ] ,
2

b b c c
Y

R b c b c



   


K K  

 

1 3 1 3
1,3 3,1 1,3

1,3 1 3 3 1

2 3 2 3
2,3 3,2 2,3

2,3 2 3 3 2

1 1[ ] [ ] ,
2

1 1[ ] [ ] .
2

b b c cY
R b c b c

b b c c
Y

R b c b c






   




   



K K

K K
  (49) 

The local stiffness matrix now can be written as: 

 
1,2 1,3 1,2 1,3

1,2 1,2 2,3 2,3

1,3 2,3 1,3 2,3

[ ] .
Y Y Y Y

Y Y Y Y
Y Y Y Y

  
    
   

K   (50) 

The resulting matrix is nothing else than a 
combination of diagonal conductance matrix and Boolean 
connections matrix from the node potential method – the 
electrical circuits analysis method that uses SLAE, where 
nodal potentials are unknown [29]. In matrix form this 
SLAE can be written as: 
 [ ][ ][ ] { } [ ]({ } [ ]{ }),  TA Y A U A J Y E   (51) 
where: [ ]A  – connections matrix (nodes to the edges 
incidence matrix); [ ]Y  – diagonal conductance matrix; 
{ }U  – unknown nodal potentials; { }J  – electric power 
sources; { }E  – voltage source. By using the analogy, this 
system can be reduced to: 

 
[ ]{ } { }, [ ] [ ][ ][ ] ,

{ } [ ]({ } [ ]{ }).
 
  

TK u f K A Y A
f A J Y E

  (52) 

Where, one concludes that the elements of the 
analogy between physical processes are directly 
embedded in the linear finite element basis functions – 
they reflect the parameters of resistance/conductivity for 
similar discrete systems. If one considers the elasticity 
problem, stiffness matrix describes the behavior of 
simplex element where each edge of which is idealized 
spring with stiffness coefficient analogical to discrete 
mechanical system. And so on for other similarities, 
including multiphysics problems. 

After numerical simulation of thermo-mechanical 
processes in RVE the resulting potential field on chosen 
volume sides can be inhomogeneous. To determine the 
effective characteristics it can be used described analogy 
method, i.e. analogy with parallel or serial conductivities 
connection [12, 26]. It is shown [16] that under the usage 
of simplex elements an effective heat conduction 
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coefficient can be found as: 

 
 

3
1

,
1

3( )
.

( )

q

q

P
q j

eff
jq q

qi j
i

d q q
T T T T




 





 
   




  (53) 

Extending this formalization to similar mechanical 
and coupled thermo-mechanical problems, one can get the 
expressions for effective thermal characteristics synthesis 
of complex structured composite materials microlevel 
model. For elasticity problem: 

 

 

 
1 2

3
1

,
1

1
3

1
,

1

3( )
,

( )

3( )
,

P
jx x

eff
jx x

x i j x
i

P

Py k y k
y jk

eff
jx

x i j x
i

d f f
E

u u u u

u uu
u u u






















 
   

 
 
  








f

f

f

f f f
f

f

f
f

  (54) 

 
where: 

1yu  and 
2yu  – transverse displacements on RVE 

flanks. For coupled thermoelasticity problem: 

 

3
,

1 ,

1

1 1 .
3

x i j x
P

i i jx
eff

j

u u
T Tu

d T d






 






 






f

f

f
  (55) 

Simulation Results 
 

Described models were realized in applied software 
by С++11 algorithmic language with high-performance 
parallel and distributed computing technology OpenCL 
v.1.2, and Qt SDK v.5.4.1. Working OS was Windows 7 
Ultimate. Executable was built under х64 by MinGW 
v.4.9.2. Simulations were done on an ordinary configured 
PC. On Fig.2 are shown the results of CM effective 
thermal characteristics synthesis. 

 
Fig.2.a.  Composite materials effective thermal characteristics synthesis results 

 
Fig.2.b.  Composite materials effective thermal characteristics synthesis results 
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Fig.2.c.  Composite materials effective thermal characteristics synthesis results 

 
The CM model is Aluminum matrix with spherical 

Carbon inclusions with different sizes and concentration. 
Figure shows the phenomenon of synthesized 
characteristics percolation threshold appearing. 

CONCLUSIONS 

The numerical microlevel effective thermal 
characteristics synthesis models of composite materials 
with complex structure have gotten the further 
development:  
1) basing on the usage of finite element method for 

modeling coupled thermoelasticity problems and 
analogies method were developed microlevel 
composite materials models which allow one to 
synthesize thermal conduction coefficient, Young's 
 

modulus, Poisson's ratio and temperature coefficient 
of linear expansion;  

2) the main difference is combined formalization of 
coupled multiphysics problems, which allows one to 
simultaneously take into account multiphysics 
boundary conditions;  

3) this approach is especially useful when used in 
engineering applications which provide a high level of 
abstraction;  

4) the models successfully implemented by technologies 
of high-performance parallel and distributed 
computing, which opens the possibility of directly 
effective usage in problems of composite materials 
optimal design;  

5) the simulation results are shown. 
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