PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complementing ERA5 and E-OBS with high-resolution river discharge over Europe

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 0.5° resolution of many global observational or quasi-observational datasets is not sufficient for the evaluation of current state-of-the-art regional climate models or the forcing of ocean model simulations over Europe. While higher resolved products are available for meteorological data, e.g. ERA5 reanalysis and the E-OBS vs 22 (EOBS22) datasets, they lack crucial information at the land-ocean boundary. ERA5 is frequently used to force regional climate models (RCMs) or ocean models and both datasets are commonly used as reference datasets for the evaluation of RCMs. Therefore, we extended both datasets with high-resolution river discharge for the period 1979–2018. On the one hand, our discharge data close the water cycle at the land-ocean interface so that the discharges can be used as lateral freshwater input for ocean models applied in the European region. On the other hand, the data can be used to identify trends in discharge that are induced by recent climate change as ERA5 and EOBS22 are rather independent datasets. The experimental setup to generate the discharges was chosen in a way that it could be easily adapted in a climate or Earth system modelling framework. Consequently, the recently developed 5 Min. horizontal resolution version of the hydrological discharge (HD) model was used to simulate discharge. It has already been applied in multiple climate modelling studies and is coupled within several global and regional Earth system models. As the HD model currently does not regard direct human impacts of the river runoff, it is well suited to investigate climate change-related discharge trends. In order to calculate the necessary gridded input fields for the HD model from ERA5 and EOBS22 data, we used the HydroPy global hydrological model. For both experiments, we found that the general behavior of discharge is captured well for many European rivers, which is consistent to earlier results. For the EOBS22 based discharges, a widespread low bias in simulated discharge occurs, which is likely caused by the missing undercatch correction in the underlying precipitation data. The analysis of trends over Southeastern Europe was hampered by missing data in EOBS22 after 2004. Using both experiments, we identified consistent trend patterns in various discharge statistics, with increases in low flow characteristics over Northern Europe and general drying trends over Central and Southern Europe. In summary, we introduced an experimental setup that is useful to generate high-resolution river runoff data consistent with the meteorological forcing for historical periods and future scenarios from any climate model data instead of having to rely on observed time series.
Słowa kluczowe
Czasopismo
Rocznik
Strony
230--248
Opis fizyczny
Bibliogr. 62 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Coastal Systems - Analysis and Modelling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
  • Institute of Coastal Systems - Analysis and Modelling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
  • Max Planck Institute for Meteorology, Hamburg, Germany
Bibliografia
  • 1. Akbulut, N.E., Sahin, Y., Bayar, S., Akbulut, A., 2009. Rivers of Turkey. In: Rivers of Europe. Elsevier, 643-672.
  • 2. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy.
  • 3. Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., Ziese, M., 2013. A description of the global landsurface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data 5 (1), 71-99. https://doi.org/10.5194/essd-5-71-2013
  • 4. Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J.-R., Breivik, Ø., 2020. Sea-state contributions to sea-level variability in the European seas. Ocean Dynam. 70 (12), 1547-1569. https://doi.org/10.1007/s10236-020-01404-1
  • 5. Cornes, R.C., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D., 2018. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. D: Atmos 123 (17), 9391-9409. https://doi.org/10.1029/2017jd028200
  • 6. Cucchi, M., Weedon, G.P., Amici, A., Bellouin, N., Lange, S., Schmied, H.M., Hersbach, H., Buontempo, C., 2020. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12 (3), 2097-2120. https://doi.org/10.5194/essd-12-2097-2020
  • 7. Dai, A., Qian, T., Trenberth, K.E., Milliman, J.D., 2009. Changes in continental freshwater discharge from 1948 to 2004. J. Climate 22 (10), 2773-2792. https://doi.org/10.1175/2008jcli2592.1
  • 8. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F., 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137 (656), 553-597. https://doi.org/10.1002/qj.828
  • 9. Donnelly, C., Andersson, J.C.M., Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 61 (2), 255-273. https://doi.org/10.1080/02626667.2015.1027710
  • 10. Dümenil, L., Todini, E., 1992. A rainfall-runoff scheme for use in the Hamburg climate model. In: Advances in Theoretical Hydrology. Elsevier, 129-157.
  • 11. European Environment Agency, 2017. Climate change, impacts and vulnerability in Europe 2016: an indicator based report. European Environment Agency EEA Rep. 01/2017. https://doi.org/10.2800/534806
  • 12. Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377 (1-2), 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  • 13. Haddeland, I., Clark, D.B., Franssen, W., Ludwig, F., Voß, F., Arnell, N.W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S.N., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G.P., Yeh, P., 2011. Multimodelestimate of the global terrestrial water balance: Setup and first results. J. Hydrometeorol. 12 (5), 869-884. https://doi.org/10.1175/2011jhm1324.1
  • 14. Hagemann, S., 2002. An improved land surface parameter dataset for global and regional climate models. Max Planck Inst. For Meteorol. Rep. no. 336. MPI, Hamburg, Germany, 21 pp. http://hdl.handle.net/11858/00-001M-0000-002B-539B-6
  • 15. Hagemann, S., Chen, C., Clark, D.B., Folwell, S., Gosling, S.N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., Wiltshire, A.J., 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dynam. 4 (1), 129-144. https://doi.org/10.5194/esd-4-129-2013
  • 16. Hagemann, S., Dümenil, L., 1998. A parametrization of the lateral waterflow for the global scale. Clim. Dynam. 14 (1), 17-31. https://doi.org/10.1007/s003820050205
  • 17. Hagemann, S., Dümenil Gates, L., 2001. Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. J. Geophys. Res. D: Atmos 106 (D2), 1503-1510. https://doi.org/10.1029/2000JD900568
  • 18. Hagemann, S., Dümenil Gates, L., 2003. Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Clim. Dynam. 21 (3—4), 349-359. https://doi.org/10.1007/s00382-003-0349-x
  • 19. Hagemann, S., Ho-Hagemann, H.T., 2021. The hydrological discharge model — a river runoff component for offline and coupled model applications (5.0.0). Zenodo. https://doi.org/10.5281/zenodo.4893099
  • 20. Hagemann, S., Stacke, T., 2021. Forcing for HD Model from HydroPy and subsequent HD Model river runoff over Europe based on EOBS22 and ERA5 data. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/EOBS_ERA5-RIVER_RUNOFF
  • 21. Hagemann, S., Stacke, T., Ho-Hagemann, H.T.M., 2020. High resolution discharge simulations over Europe and the Baltic Sea catchment. Front. Earth Sci. 8. https://doi.org/10.3389/feart.2020.00012
  • 22. Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., Pappenberger, F., 2020. GloFAS-ERA5 operational global river discharge reanalysis 1979 present. Earth Syst. Sci. Data 12 (3), 2043-2060. https://doi.org/10.5194/essd-12-2043-2020
  • 23. Hartmann, D., Tank, A.K., Rusticucci, M., Alexander, L., Brönnimann, S., Charabi, Y., Dentener, F., Dlugokencky, E., Easterling, D., Kaplan, A., Soden, B., Thorne, P., Wild, M., Zhai, P., 2013. Observations: Atmosphere and surface. In: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. (Eds.), The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 24. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 146 (730), 1999-2049. https://doi.org/10.1002/qj.3803
  • 25. Ho-Hagemann, H.T.M., Hagemann, S., Grayek, S., Petrik, R., Rockel, B., Staneva, J., Feser, F., Schrum, C., 2020. Internal model variability of the regional coupled system model GCOAST-AHOI. Atmosphere 11 (3), 227. https://doi.org/10.3390/atmos11030227
  • 26. Khublaryan, M.G., 2009. Water resources for sustainable development, with particular reference to Russia. In: Vol. I of Area Studies (Regional Sustainable Development Review): Russia-Volume I. EOLSS Publications, Oxford, UK, 81-94.
  • 27. Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A.F.V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., López, J.A., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L.V., Petrovic, P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 22 (12), 1441-1453. https://doi.org/10.1002/joc.773
  • 28. Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 424-425, 264-277. https://doi.org/10.1016/j.jhydrol.2012.01.011
  • 29. Klok, E.J., Klein Tank, A.M.G., 2009. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29 (8), 1182-1191. https://doi.org/10.1002/joc.1779
  • 30. Knoben, W.J.M., Freer, J.E., Woods, R.A., 2019. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 23 (10), 4323-4331. https://doi.org/10.5194/hess- 23- 4323- 2019
  • 31. Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., Takahashi, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93 (1), 5-48. https://doi.org/10.2151/jmsj.2015-001
  • 32. Lamarche, C., Santoro, M., Bontemps, S., d’Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P., Arino, O., 2017. Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community. Remote Sens. 9 (1), 36. https://doi.org/10.3390/rs9010036
  • 33. Lehner, B., Döll, P., 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296 (1), 1-22. https://doi.org/10.1016/j.jhydrol.2004.03.028
  • 34. Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B. 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 41 (3-4), 295-319. https://doi.org/10.2166/nh.2010.007
  • 35. Llasat, M.C., del Moral, A., Cortès, M., Rigo, T., 2021. Convective precipitation trends in the Spanish Mediterranean region. Atmos. Res. 257, 105581. https://doi.org/10.1016/j.atmosres.2021.105581
  • 36. Merchán, D., Causapé, J., Abrahao, R., 2013. Impact of irrigation implementation on hydrology and water quality in a small agricultural basin in Spain. Hydrol. Sci. J. 58 (7), 1400-1413.
  • 37. Muis, S., Apecechea, M.I., Dullaart, J., de Lima Rego, J., Madsen, K.S., Su, J., Yan, K., Verlaan, M., 2020. A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00263
  • 38. Peña-Angulo, D., Vicente-Serrano, S.M., Domnguez-Castro, F., Murphy, C., Reig, F., Tramblay, Y., Trigo, R.M., Luna, M.Y., Turco, M., Noguera, I., Aznárez-Balta, M., Garcá-Herrera, R., Tomas-Burguera, M., Kenawy, A.E., 2020. Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environ. Res. Lett. 15 (9), 094070. https://doi.org/10.1088/1748-9326/ab9c4f
  • 39. Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100 (2), 81-92. https://doi.org/10.1175/1520-0493(1972)100〈0081:otaosh〉2.3.co;2
  • 40. Rakovec, O., Kumar, R., 2022. Mesoscale hydrologic model based historical streamflow simulation over europe at 1/16 degree. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/MHMBASSIMEUR
  • 41. Rockel, B., Will, A., Hense, A., 2008. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 17 (4), 347-348. https://doi.org/10.1127/0941-2948/2008/0309
  • 42. Samaniego, L., Kumar, R., Attinger, S., 2010. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46 (5), W05523. https://doi.org/10.1029/2008WR007327
  • 43. Smakhtin, V., Revenga, C., Döll, P., 2004. A pilot global assessment of environmental water requirements and scarcity. Water Int. 29 (3), 307-317. https://doi.org/10.1080/02508060408691785
  • 44. Stacke, T., Hagemann, S., 2012. Development and evaluation of a global dynamical wetlands extent scheme. Hydrol. Earth Syst. Sci. 16 (8), 2915-2933. https://doi.org/10.5194/hess- 16- 2915- 2012
  • 45. Stacke, T., Hagemann, S., 2021. HydroPy (v1.0): A new global hydrology model written in Python. Geosci. Model Dev. https://doi.org/10.5194/gmd- 2021- 53
  • 46. Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L.M., van Lanen, H.A.J., Sauquet, E., Demuth, S., Fendekova, M., Jódar, J., 2010. Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 14 (12), 2367-2382. https://doi.org/10.5194/hess-14-2367-010
  • 47. Stahl, K., Tallaksen, L.M., Hannaford, J., van Lanen, H.A.J., 2012. Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrol. Earth Syst. Sci. 16 (7), 2035-2047. https://doi.org/10.5194/hess- 16- 2035- 2012
  • 48. Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., Urakawa, S., 2017. A dataset of continental river discharge based on JRA-55 for use in a global ocean circulation model. J. Oceanogr. 74 (4), 421-429. https://doi.org/10.1007/s10872-017-0458-5
  • 49. Svendsen, L. M., Gustafsson, B., 2020. Waterborne nitrogen and phosphorus inputs and water flow to the Baltic Sea 1995—2018. online, viewed 14 June 2022. https://helcom.fi/baltic-sea-trends/environment-fact- sheets/eutrophication/
  • 50. Telteu, C.-E., Schmied, H.M., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J.E.S., Andersen, L.S., Grillakis, M., Gosling, S.N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H.L., Trautmann, T., Mao, G., Hanasaki, N.,Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S.S., Herz, F., 2021. Understanding each others models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geosci. Model Dev. 14 (6), 3843-3878. https://doi.org/10.5194/gmd- 14- 3843- 2021
  • 51. Teuling, A.J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P., Buchmann, N., Ammann, C., Montagnani, L., Richardson, A.D., Wohlfahrt, G., Seneviratne, S.I., 2009. A regional perspective on trends in continental evaporation. Geophys. Res. Lett. 36 (2). https://doi.org/10.1029/2008gl036584
  • 52. Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Soil Sci. 66 (1), 77. https://doi.org/10.1097/00010694- 194807000- 00007
  • 53. Tsujino, H., Urakawa, S., Nakano, H., Small, R.J., Kim, W.M., Yeager, S.G., Danabasoglu, G., Suzuki, T., Bamber, J.L., Bentsen, M., Böning, C.W., Bozec, A., Chassignet, E.P., Curchitser, E., Dias, F.B., Durack, P.J., Griffies, S.M., Harada, Y., Ilicak, M., Josey, S.A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W.G., Sommer, J.L., Marsland, S.J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., Yamazaki, D., 2018. JRA-55 based surface dataset for driving ocean sea-ice models (JRA55-do). Ocean Modell. 130, 79-139. https://doi.org/10.1016/j.ocemod.2018.07.002
  • 54. Van Der Knijff, J.M., Younis, J., Roo, A.P.J.D., 2010. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24 (2), 189-212. https://doi.org/10.1080/13658810802549154
  • 55. Vogt, J., Soille, P., de Jager, A., Rimavicîute, E., Mehl, W., Foisneau, S., Bódis, K., Dusart, J., Paracchini, M.L., Haastrup, P., Bamps, C., 2007. A pan-European river and catchment database. Joint Research Centre (JRC), Ispra, Italy Tech. Rep. 22920 EN. https://doi.org/10.2788/35907
  • 56. Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., Schewe, J., 2014. The inter-sectoral impact model intercom- parison project (ISIMIP): Project framework. Proc. Natl. Acad. Sci. USA 111 (9), 3228-3232. https://doi.org/10.1073/pnas.1312330110
  • 57. Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J., Viterbo, P., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim re-analysis data. Water Resour. Res. 50 (9), 7505-7514. https://doi.org/10.1002/2014WR015638
  • 58. Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., Österle, H., Adam, J.C., Bellouin, N., Boucher, O., Best, M., 2011. Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12 (5), 823-848. https://doi.org/10.1175/2011JHM1369.1
  • 59. Wilson, C., Harle, J.D., Wakelin, S.L., 2019. Development of a regional ocean model for the Caribbean, including 3D dynamics, thermodynamics and full surface flux forcing. National Oceanogr. Centre Res. & Consultancy Rep. 65. National Oceanography Centre, Southampton, UK. Yamazaki, D., de Almeida, G.A.M., Bates, P.D., 2013. Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res. 49 (11), 7221-7235. https://doi.org/10.1002/wrcr.20552
  • 60. Yamazaki, D., Kanae, S., Kim, H., Oki, T., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 47 (4), W04501. https://doi.org/10.1029/2010wr009726
  • 61. Zampieri, L., Kauker, F., Fröhle, J., Sumata, H., Hunke, E.C., Goessling, H.F., 2021. Impact of sea-ice model complexity on the performance of an unstructured-mesh sea-ice/ocean model under different atmospheric forcings. J. Adv. Model. Earth Syst. 13 (5). https://doi.org/10.1029/2020ms002438
  • 62. Zängl, G., Reinert, D., Rípodas, P., Baldauf, M., 2014. The ICON (ICOsahedral non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc. 141 (687), 563-579. https://doi.org/10.1002/qj.2378
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aecf428a-3f67-4e10-b6ae-c3b802e4e90a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.