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SAT-BASED BOUNDED MODEL CHECKING FOR TIMED
INTERPRETED SYSTEMS AND THE RTECTLK

PROPERTIES

BOŻENA WOŹNA-SZCZEŚNIAK, IRENEUSZ SZCZEŚNIAK

Abstract

We define an SAT-based bounded model checking (BMC) method for RTECTLK
(the existential fragment of the real-time computation tree logic with knowledge) that
is interpreted over timed models generated by timed interpreted systems. Specifically,
we translate the model checking problem for RTECTLK to the model checking problem
for a variant of branching temporal logic (called EyCTLK) interpreted over an abstract
model, and we redefine an SAT-based BMC technique for EyCTLK.

1. Introduction

The Interpreted system (IS) [5] is the formalism, which was designed to
model multi-agent systems (MASs) [11], and to reason about the agents’
epistemic and temporal properties. The timed interpreted system (TIS) [14]
is the formalism that extends ISs to make feasible reasoning about real-time
aspects of MASs. The TIS gives a computationally grounded semantics on
which it is feasible to interpret both the time-bounded temporal modalities
and the conventional epistemic modalities.

The fundamental thought of the SAT-based bounded model checking
(BMC) systems [2, 10] comprises in translating the existential model check-
ing problem for a modal logic and for a Kripke structure to the SAT problem
[6], furthermore, exploiting the sophistication of present day SAT-solvers,
i.e., programs (tools) that automatically decide whether a propositional
formula is satisfiable.

To express the specifications of MASs different extensions of classic tem-
poral logics [3] with epistemic [5], doxastic [7], and deontic (to represent the
correct functioning behaviour) [9] modalities have been proposed. In this
paper we consider RTECTLK, i.e., an epistemic extension of the existential
fragment of the soft real-time CTL (RTECTL) [4], which is a propositional
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branching-time temporal logic with bounded operators, and which was in-
troduced to permit specification and reasoning about time-critical correct-
ness properties. We interpret RTECTLK over timed models generated by
timed interpreted systems.

A version of the SAT-based BMC method for specifications expressed in
RTECTLK has been published in [12, 13]. However, the underling model
for RTECTLK was the interpreted system [5] with the asynchronous se-
mantics (interleaving semantics). Here we use, as the underling model for
RTECTLK, the timed interpreted systems with the synchronous semantics,
thus the agents over this semantics perform a joint action at a given time
in a global state. Moreover, the RTECTLK properties cannot be expressed
using nested applications of the next state operators.

In the paper we make the following contribution. We define the SAT-
based BMCmethod for RTECTLK interpreted over timed models generated
by timed interpreted systems. Specifically, we translate the model checking
problem for RTECTLK to the model checking problem for a variant of
branching temporal logic (called EyCTLK) interpreted over an abstract
model, and we redefine and improve the SAT-based BMC technique for
EyCTLK of [8]. The improvement of the SAT-based BMC [8] consists in
utilizing the SAT-based BMC method for ECTL [15]. Its main idea is
to translate every subformula ψ of the formula ϕ using only fk(ψ) paths of
length k. So, our new BMC algorithm uses a reduced number of paths, what
results in significantly smaller and less complicated propositional formulae
that encode the RTECTLK properties.

The rest of the paper is organised as follows. In Section 2 we introduce
the TIS and the RTECTLK logic. In Section 3 we show how to translate
the model checking problem for RTECTLK to the model checking problem
for EyCTLK. In Section 4 we provide a BMC method for EyCTLK and for
ATIS. Finally in Section 5 we conclude the paper.

2. Preliminaries

Let us start by fixing some notation used through the paper. IN is the
set of non-negative integers, IN+ = IN\{0}, PV is a set of propositional
variables, and X is a finite set of non-negative integers variables, called
clocks. A clock valuation is a function v : X → IN that assigns to each
clock x ∈ X a non-negative integer value v(x). IN|X| is the set of all the
clock valuations. For X ′ ⊆ X, the valuation v′ = v[X ′ := 0] is defined as:
∀x ∈ X ′, v′(x) = 0 and ∀x ∈ X\X ′, v′(x) = v(x). For δ ∈ IN, v+ δ denotes
the valuation v′ such that ∀x ∈ X, v′(x) = v(x) + δ.
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Let x ∈ X, c ∈ IN, and ∼∈ {≤, <,=, >,≥}. The set C(X) of clock
constraints over X is defined by the following grammar:

φ := true | x ∼ c | φ ∧ φ
Let v be a clock valuation, and φ ∈ C(X). The satisfaction relation v |= φ
is defined inductively with the following rules:
v |= true,
v |= x ∼ c iff v(x) ∼ c,
v |= φ ∧ φ′ iff v |= φ and v |= φ′.
Finally, by the time successor of v (written succ(v)) we denote the clock
valuation v′ such that ∀x ∈ X, v′(x) = v(x) + 1.
Timed Interpreted Systems. Let A = {1, . . . , n} be the non-empty
and finite set of agents, E be a special agent that is used to model the
environment in which the agents operate, and PV =

⋃
c∈A PVc ∪ PVE be

a set of propositional variables such that PVc1 ∩ PVc2 = ∅ for all c1, c2 ∈
A ∪ {E}. The set of agents A together with the environment constitute
a multi-agent system (MAS), to model which we utilize the formalism of
timed interpreted system (TIS).

In TIS, each agent c ∈ A is modelled by:
• Lc - a non-empty and finite set of local states,
• Actc - a non-empty and finite set of possible actions such that the
special null action εc belongs to Actc; it is assumed that actions are
”public”,
• Xc - a non-empty and finite set of clocks,
• Pc : Lc → 2Actc - a protocol function that characterizes rules ac-
cording to which actions may be performed in every local state,
• tc : Lc×LE×C(Xc)×2Xc×Act→ Lc with Act =

∏
c∈AActc×ActE

- a (partial) evolution function which defines local transitions; each
element of Act and C(Xc) is called a joint action and an enabling
condition, respectively,
• Vc : Lc → 2PV - a valuation function which assigns to every local
state a set of propositional variables that are assumed to be true at
that state,
• Ic : Lc → C(Xc) - an invariant function which specifies the amount
of time agent c may spend in its local states.

We assume that if εc ∈ Pc(`c), then tc(`c, `E , φc, X, (a1, . . . , an, aE)) = `c
for ac = εc, any φc ∈ C(Xc), and any X ∈ 2Xc . Finally, we assume that
the sets of clocks are pairwise disjoint.

Correspondingly to the other agents, the environment E is modelled by
• LE - a non-empty and finite set of local states,
• ActE - a non-empty and finite set of possible actions,
• XE - a non-empty and finite set of clocks,
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• PE : LE → 2ActE - a protocol function,
• tE : LE × C(XE)× 2XE ×Act→ LE - a (partial) evolution function,
• VE : LE → 2PVE - a valuation function,
• IE : LE → C(XE) - and an invariant function which specifies the
amount of time agent E may spend in its local states.

It is assumed that local states, actions and clocks for E are ”public”.
Let the symbol S =

∏
c∈A∪E Lc × IN|Xc| denote the non-empty set of all

global states, and s = ((`1, v1), . . . , (`n, vn), (`E , vE)) ∈ S. Then, the symbols
lc(s) = `c and vc(s) = vc denote, respectively, the local component and the
clocks valuation of agent c ∈ A∪ {E} in the global state s. Finally, given a
set of agents A, the environment E , and a set of initial global states ι ⊆ S
such that for all c ∈ A∪ {E} and for all x ∈ Xc it holds vc(x) = 0, a timed
interpreted system (TIS) is a tuple

I = ({Lc, Actc, Xc, Pc, tc,Vc, Ic}c∈A∪{E}, ι)
For a given time interpreted system I we define a timed model as a tuple

M = (Σ, ι, S, T,V) :

• Σ = Act∪ IN is the set of labels (i.e., joint actions and natural numbers),
• S and ι ∈ S are defined as above,
• V : S → 2PV is the valuation function defined as V(s) =

⋃
c∈A Vc(lc(s)),

• T ⊆ S× (Act∪ IN)×S is a transition relation defined by action and time
transitions:
(1) Action transition: for any a ∈ Act, (s, a, s′) ∈ T iff for all c ∈ A,

there exists a local transition tc(lc(s), lE(s), φc, X
′, a) = lc(s′) such

that vc(s) |= φc ∧ I(lc(s)) and v′c(s′) = vc(s)[X ′ := 0] and v′c(s′) |=
I(lc(s′)), and there exists a local transition tE(lE(s), φE , X

′, a) =
lE(s

′) such that vE(s) |= φE ∧ I(lE(s)) and v′E(s
′) = vE(s)[X

′ := 0]
and v′E(s

′) |= I(lE(s
′)).

(2) Time transition: let δ ∈ IN, (s, δ, s′) ∈ T iff for all c ∈ A∪{E}, lc(s) =
lc(s′) and vc(s) |= I(lc(s)) and v′c(s′) = vc(s) + δ and v′c(s′) |=
I(lc(s)).

We assume that the relation T is total, i.e. for any s ∈ S there exists s′ ∈ S
and there exist either a non-empty joint action a ∈ Act or natural number
δ ∈ IN such that it holds T (s, a, s′) or T (s, δ, s′).

Given a time interpreted system I one can define the indistinguishability
relation ∼c⊆ S × S for agent c as follows: s ∼c s

′ iff lc(s′) = lc(s) and
vc(s′) = vc(s).

Let M be a timed model generated by a TIS I. A run of I is an infinite
sequence ρ = s0

δ0,a0→ s1
δ1,a1→ s2

δ2,a2→ . . . of global states such that the
following conditions hold for all i ∈ IN: si ∈ S, ai ∈ Act, δi ∈ IN+, and
there exists s′i ∈ S such that (si, δi, s

′
i) ∈ T and (s′i, ai, si+1) ∈ T . Note
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that the definition of the run does not allow two consecutive joint actions
to be performed one after the other, i.e., between each two joint actions
some time must pass.

The symbol ΠI(s) denotes the set of all the runs in I that start at the
state s. Π =

⋃
s0∈ι ΠI(s

0).
RTECTLK. Let p ∈ PV, c ∈ A, Γ ⊆ A, and I be an interval in IN of the
form: [a, b) or [a,∞), for a, b ∈ IN and a 6= b. The existential fragment of
RTCTL with knowledge (RTECTLK) is defined by the following grammar:

ϕ := > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ |
E(ϕUIϕ) | EGIϕ | Kcϕ | EΓϕ | DΓϕ | CΓϕ

The symbol E (for some path) is the path quantifier. The symbols UI(bound-
ed until) and GI (bounded globally) are temporal modalities. The derived
basic temporal modalities for bounded eventually and bounded release are
defined as follows: EFIϕ

def
= E(>UIϕ), E(ϕRIψ)

def
= E(ψUI(ψ∧ϕ))∨EGIψ.

Hereafter, if the interval I is of the form [0,∞), then we omit it for the sim-
plicity of the presentation. The symbols Kc (agent c considers possible),
EΓ (possibly everyone in Γ knows), DΓ (possible distributed knowledge in
the group Γ), and CΓ (possible common knowledge among agents in Γ) are
the dualities to standard epistemic modalities.

To define the satisfiability relation for RTECTLK, we define the notion
of a discrete path λρ corresponding to run ρ (this can be done in a unique
way because of the assumption that the runs are strongly monotonic), and
we assume the following definitions of epistemic relations: ∼EΓ

def
=

⋃
c∈Γ ∼c,

∼CΓ
def
= (∼EΓ )+ (the transitive closure of ∼EΓ ), ∼DΓ

def
=

⋂
c∈Γ ∼c, where Γ ⊆ A.

Let ∆0 = [b0, b1),∆1 = [b1, b2), . . . be the sequence of pairwise disjoint
intervals, where: b0 = 0 and bi = bi−1 + δi−1 if i > 0. For each t ∈ IN, let
idxρ(t) denote the unique index i such that t ∈ ∆i. A path λρ corresponding
to ρ is a mapping λρ : IN→ S such that λρ(t) = ((`i1, v

i
1+t−bi), . . . , (`in, vin+

t− bi), (`iE , viE + t− bi)) = si + t− bi, where i = idxρ(t).
Let Y ∈ {D,E,C}. The satisfiability relation |=, which indicates truth of

a RTECTLK formula in the timed modelM at state s, is defined inductively
with the classical rules for propositional operators and with the following
rules for the temporal and epistemic modalities:
M, s |= E(αUIβ) iff (∃ρ ∈ ΠI(s))(∃i ∈ I)(M,λρ(i) |= β and

(∀0 ≤ j < i) M,λρ(j) |= α)
M, s |= EGIα iff (∃ρ ∈ ΠI(s)) (∀i ∈ I)(M,λρ(i) |= α)
M, s |= Kcα iff (∃ρ ∈ ΠI)(∃i ≥ 0)(s ∼c λρ(i) and M,λρ(i) |= α)
M, s |= Y Γα iff (∃ρ ∈ ΠI)(∃i ≥ 0)(s ∼YΓ λρ(i) and M,λρ(i) |= α)
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An RTECTLK formula ϕ holds in the model M (denoted M |= ϕ) iff
M, s0 |= ϕ for some state s0 ∈ ι. The model checking problem asks whether
M |= ϕ.

3. From RTECTLK to EyCTLK

The translation of the model checking problem for RTECTLK to the
model checking problem for EyCTLK, a language defined below and inter-
preted over an abstract model for an augmented timed interpreted system is
based on [8], where the translation of the model checking problem for the
existential part of TCTL [1] augmented with knowledge (TECTLK) with
a dense-time semantics defined over timed automata to the model checking
problem for EyCTLK with a semantics defined over the region graph has
been introduced.

We start by defining augmented timed interpreted systems (ATIS) for a
given timed interpreted system I = ({Lc, Actc, Xc, Pc, tc,Vc, Ic}c∈A∪{E}, ι),
and an RTECTLK formula ϕ.

Let m be the number of intervals appearing in ϕ. Then, an ATIS Iϕ is
defined as the following tuple

({Lc,Vc, Ic}c∈A∪{E}, {Actc, Xc, Pc, tc}c∈A, Act′E , X ′E , P ′E , t′E) :

• Act′E = ActE ∪ {ay}, where ay is a new action corresponding to
setting to zero a new clock y.
• X ′E = XE ∪ {y}, where the new clock y corresponds to all the in-
tervals appearing in ϕ; one clock is sufficient to perform the BMC
algorithm that is presented in the next section.
• P ′E : LE → 2Act

′
E is an extension of the protocol function PE : LE →

2ActE such that {ay} ⊆ P ′E(`) for all ` ∈ LE .
• t′E : LE × C(X ′E)× 2X

′
E × Act′ → LE is an extension of tE such that

Act′ =
∏n
i=1Acti×Act′E and t′E(`E , true, {ay}, (ε1, . . . , εn, ay)) = `E .

An abstract model for ATIS. Let ϕ be an RTECTLK formula,
PV ′ = PV ∪ {py∈I | I is an interval in ϕ}, and Iϕ = ({Lc, Actc, Xc, Pc,
tc,Vc, Ic}c∈A∪{E}, ι) be an ATIS. The abstract model for Iϕ is a tupleMϕ =
(Σϕ, ι, Sϕ, Tϕ,Vϕ), where

• Σϕ = Act ∪ {τ}, where Act =
∏

c∈A∪{E}Actc,
• Sϕ =

∏
c∈A∪E Lc × IN|Xc| is the set of all possible global states,

• Vϕ : Sϕ → 2PV
′
is the valuation function such that:

(1) p ∈ Vϕ(s) iff p ∈
⋃

c∈A∪E Vc(lc(s)) for all p ∈ PV,
(2) py∈I ∈ Vϕ(((`1, v1), . . . , (`n, vn), (`E , vE))) iff vE(y) ∈ I,

• Tϕ ⊆ Sϕ × Σϕ × Sϕ is a transition relation defined by action and
time transitions. Let a ∈ Act:
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1. Action transition: (s, a, s′) ∈ Tϕ iff (∀c ∈ A) (∃φc ∈ C(Xc))
(∃X ′c ⊆ Xc) (tc(lc(s), lE(s), φc, X

′
c, a) = lc(s′) and vc(s) |= φc ∧

I(lc(s)) and v′c(s′) = vc(s)[X ′c := 0] and v′c(s′) |= I(lc(s′)))
and (∃φE ∈ C(XE)) (∃X ′E ⊆ XE) (t′E(lE(s), φE , X

′
E , a) = lE(s

′)
and vE(s) |= φE ∧ I(lE(s)) and v′E(s

′) = vE(s)[X
′
E := 0] and

v′E(s
′) |= I(lE(s

′)))
2. Time transition: (s, τ, s′) ∈ Tϕ iff (∀c ∈ A ∪ {E})(lc(s) = lc(s′)

and vc(s) |= I(lc(s)) and v′c(s′) = succ(vc(s)) and v′c(s′) |=
I(lc(s))).

Note that each transition is followed by a possible reset of new
clocks. This is to ensure that the new clocks can be reset along the
evolution of the system any time it is needed.

Given an augmented time interpreted system Iϕ one can define the in-
distinguishability relation ∼c⊆ Sϕ × Sϕ for agent c as follows: s ∼c s

′ iff
lc(s) = lc(s′) and vc(s) = vc(s′).
The EyCTLK language. In order to translate a RTECTLK formula ϕ
into the corresponding EyCTLK formula ψ we map the RTECTLK language
into EyCTLK by reinterpreting the temporal operators, denoted by EyU and
EyG. Formally, for p ∈ PV ′, c ∈ A, and Γ ⊆ A, the EyCTLK formulae are
defined by the following grammar:

ϕ := >|⊥|p |¬p |ϕ ∧ ϕ |ϕ ∨ ϕ |Ey(ϕUϕ) |EyGϕ |Kcϕ |EΓϕ |DΓϕ |CΓϕ

In addition, we introduce some useful derived temporal modalities:
• Ey(ϕRψ)

def
= Ey(ψU(ϕ ∧ ψ)) ∨ EyGψ (release),

• EyFϕ
def
= Ey(>Uϕ) (eventually).

The EyCTLK formulae are interpreted over the abstract model Mϕ. Let
TI denote the part of Tϕ, where transitions are labelled with elements of
Act ∪ {τ}, and Ty denotes the transitions that reset the clock y.

Definition 1. A path π in Mϕ is a sequence π = (s0, s1, . . .) of states
such that (s0, τ, s1) ∈ TI, and for each i > 0, either (si, ai, si+1) ∈ TI or
(si, τ, si+1) ∈ TI, and if (si, ai, si+1) ∈ TI holds, then (si+1, τ, si+2) ∈ TI
holds, and ai ∈ Act for each i ≥ 0.

Observe that the above definition of the path ensures that the first tran-
sition is the time one, and between each two action transitions at least one
time transition appears.

For a path π, π(i) denotes the i-th state si of π. Πϕ(s) denotes the set
of all the paths starting at s ∈ Sϕ, and Πϕ =

⋃
s0∈ιϕ Πϕ(s0).

The satisfiability relation |=, which indicates truth of ψ in Mϕ at state s
(in symbols Mϕ, s |= ψ), is defined inductively with the classical rules for



76 BOŻENA WOŹNA-SZCZEŚNIAK, IRENEUSZ SZCZEŚNIAK

propositional operators and with the following rules for the temporal and
epistemic modalities:
• Mϕ, s |= Ey(αUβ) iff (∃s′ ∈ Sϕ)((s, (ε1, . . . , εn, ay), s

′) ∈ Ty and
(∃π ∈ Πϕ(s′))(∃m ≥ 0) [Mϕ, π(m) |= β and (∀j < m)Mϕ, π(j) |= α]),
• Mϕ, s |= EyGα iff (∃s′ ∈ Sϕ)((s, (ε1, . . . , εn, ay), s

′) ∈ Ty and
(∃π ∈ Πϕ(s′))(∀m ≥ 0) Mϕ, π(m) |= α),
• Mϕ, s |= Kcα iff (∃π ∈ Πϕ)(∃m ≥ 0)(s ∼c π(m) and Mϕ, π(m) |= α),
• Mϕ, s |= Y Γα iff (∃π ∈ Πϕ)(∃m ≥ 0)(s ∼YΓ π(m) and Mϕ, π(m) |= α).

An EyCTLK formula ϕ is valid on Mϕ (denotedMϕ |= ϕ) iffMϕ, s
0 |= ϕ

for some s0 ∈ ι, i.e., ϕ is true at some initial state of the model Mϕ.
Having defined syntax and semantics of the EyCTLK logic, we can now

introduce the translation mentioned above. An RTECTLK formula ϕ is
translated inductively into the EyCTLK formula H(ϕ) as follows:

• H(p) = p if p ∈ PV ′, H(¬p) = ¬p if p ∈ PV ′,
• H(α ∨ β) = H(α) ∨H(β), H(α ∧ β) = H(α) ∧H(β),
• H(EGIα) = EyG(¬py∈I ∨H(α)),
• H(E(αUIβ)) = Ey(H(α)U(H(β) ∧ py∈I)),
• H(Kcα) = KcH(α), H(Y Γα) = Y ΓH(α), where Y ∈ {D,E,C}.

The main theorem of the section states that the validity of the RTECTLK
formula ϕ over the timed model is equivalent to the validity of the corre-
sponding EyCTLK formula H(ϕ) over the abstract model. The proof of the
theorem can be completed by an induction of the formula ϕ.

Theorem 1. Let M be the timed model, ϕ an RTECTLK formula, and Mϕ

the abstract model. Then, M |= ϕ iff Mϕ |= H(ϕ).

4. An SAT-based BMC method for EyCTLK

Bounded semantics. Let Mϕ = (Σϕ, ι, Sϕ, Tϕ,Vϕ) be an abstract model,
k ∈ IN, and 0 ≤ l ≤ k. As before, we denote by TI the subset of Tϕ, where
transitions are labelled with elements of Act ∪ {τ}, and by Ty the set of
transitions resetting the clock y.

Definition 2. A k-path π is a finite sequence π = (s0, . . . , sk) of states
such that (s0, τ, s1) ∈ TI, and for each 0 < i < k, either (si, ai, si+1) ∈ TI
or (si, τ, si+1) ∈ TI, and if (si, ai, si+1) ∈ TI holds, then (si+1, τ, si+2) ∈ TI
holds, and ai ∈ Act for each 0 ≤ i < k.

The symbol Πk(s) denotes the set of all the k-paths starting at s in Mϕ,
and Πk =

⋃
s0∈ιϕ Πk(s

0).

Definition 3. Let π(i) = ((`i1, v
i
1), . . . , (`in, v

i
n), (`iE , v

i
E)) for all i ≤ k. A k-

path π = (π(0), . . . , π(k)) is a loop if there exists 0 ≤ l < k and (∀c ∈
A ∪ {E})(`kc = `lc) and (∀c ∈ A)(vkc = vlc) and vkE↓XE = vlE↓XE , where ↓ XE
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denoted the projection of the clock valuation vE : XE ∪{y} → IN on the clock
valuation v′E : XE → IN.

Satisfaction of the temporal operator EyG on a k-path π in the bounded
case depends on whether or not π is a loop. Therefore, we assume a function
loop : Πk 7→ 2IN which returns the set of all the indices of the states for which
there is a transition from the last state of a k-path π. Note that if a k-path
is a loop, then it represents an infinite path.

The bounded satisfiability relation |=k, which indicates truth of ψ inMϕ at
state s (denoted Mϕ, s |=k ψ) is defined inductively with the classical rules
for propositional operators and with the following rules for the temporal
and epistemic modalities:
• Mϕ, s |=k Ey(αUβ) iff (∃s′ ∈ Sϕ)((s, (ε1, . . . , εn, ay), s

′) ∈ Ty and (∃π ∈
Πk(s

′))(∃0 ≤ m ≤ k) (Mϕ, π(m) |=k β and (∀j < m)Mϕ, π(j) |= α)),
• Mϕ, s |=k EyGα iff (∃s′ ∈ Sϕ)((s, (ε1, . . . , εn, ay), s

′) ∈ Ty and
(∃π ∈ Πk(s

′))(∀0 ≤ j ≤ k) (Mϕ, π(j) |= α and loop(π) 6= ∅),
• Mϕ, s |= Kcα iff (∃π ∈ Πk)(∃0 ≤ m ≤ k)(s ∼c π(m) andMϕ, π(m) |= α),
• Mϕ, s |= Y Γα iff (∃π ∈ Πk)(∃0 ≤ m ≤ k)(s ∼YΓ π(m) and M,π(m) |= α),
where Y ∈ {D,E,C}.
We use the following notationMϕ |=k ψ iffMϕ, s

0 |=k ψ for some s0 ∈ ιϕ.
The bounded model checking problem consists in finding out whether there
exists k ∈ IN such that Mϕ |=k ψ.

The following theorem shows that for some particular bound the bounded
and unbounded semantics are equivalent.

Theorem 2. Let ϕ be an RTECTLK formula, Mϕ an abstract model, and
ψ = H(ϕ) an EyCTLK formula. The following equivalence holds: Mϕ |= ϕ
iff there exists k ≥ 0 such that Mϕ |=k ψ.

Translation to SAT. Let Mϕ be an abstract model, ψ an EyCTLK for-
mula, and k ≥ 0 a bound. The presented propositional encoding of the
BMC problem for EyCTLK improves the BMC encoding of [8] and it is
based on the BMC encoding of [16]. It relies on defining the propositional
formula [Mϕ, ψ]k := [Mψ,ι

ϕ ]k ∧ [ψ]Mϕ,k, which is satisfiable if and only if
Mϕ |=k ψ holds.

The definition of [Mϕ, ψ]k assumes that both the states and the joint
actions of Mϕ are encoded symbolically. This is possible, since both the set
of states and the set of joint actions are finite. Also, since we work with a set
of k-paths, we can bound the clocks valuation to the set D = {0, . . . , c+ 1}
with c being the largest constant appearing in any enabling condition or
state invariants of all the agents and in intervals appearing in ϕ. Moreover,
this definition assumes knowledge of the number of k-paths of Mϕ that are
sufficient to validate ψ. To this aim, as usually, we define the auxiliary
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function fk : EyCTLK → IN: fk(>) = fk(⊥) = fk(p) = fk(¬p) = 0,
where p ∈ PV ′; fk(α∧ β) = fk(α) + fk(β); fk(α∨ β) = max{fk(α), fk(β)};
fk(Ey(αUβ)) = k · fk(α) + fk(β) + 1 ; fk(EyGα) = (k + 1) · fk(α) + 1;
fk(CΓα) = fk(α) + k; fk(Y α) = fk(α) + 1 for Y ∈ {Kc,DΓ,EΓ}.

Formally, let c ∈ A. We assume that each state s ∈ Sϕ is represented by
a symbolic state w = ((w1, v1) . . . , (wn, vn), (wE , vE)), where each symbolic
local state (wc, vc) is a pair of vectors of propositional variables; the first
element encodes local states of Lc and the second element encodes the
clock valuations over D. Next, we assume that each join action a ∈ Act is
represented by a symbolic action a = (a1, . . . , an, aE), where each symbolic
local action ac is a vector of propositional variables. Moreover, we assume
that the time action τ is represented by a proposition variable ℘τ . Finally,
we assume a symbolic representation of a k-path π, the number of which
is j, and we call it the j-th symbolic k-path πj = (w0,j , . . . ,wk,j), where
0 ≤ j < fk(ψ), 0 ≤ i ≤ k, and wi,j is a symbolic state.

Let w and w′ be two different symbolic states, and a a symbolic action.
We assume definitions of the following auxiliary propositional formulae:
• p(w) - encodes the set of states of Mϕ in which p ∈ PV ′ holds.
• Is(w) - encodes the state s of Mϕ.
• Hc(w,w′) - encodes the equality of two local states and two local clock
valuations of agent c ∈ A.
• H(w,w′) :=

∧
c∈A∪{E}Hc(w,w′) - encodes equality of two global states.

• T (w,a,w′) is a formula over w, w′, and a, which is true for valuations sw
ofw, sw′ of w′, and sa of a iff either (sw, sa, sw′) ∈ TI or (sw, ℘τ , sw′) ∈ TI
(encodes non-resetting transitions of Mϕ).
• Ty(w,w′) is a formula over w and w′, which is true for two valuations sw
of w and sw′ of w′ iff (sw, (ε1, . . . , εn, ay), sw′) ∈ Ty (encodes transitions
resetting the clock y).
Let Fk(ψ) = {j ∈ IN | 1 ≤ j ≤ fk(ψ)}, wi,j and ai,j be, respectively,

symbolic states and symbolic actions, for 0 ≤ i ≤ k and j ∈ Fk(ψ). The
formula [Mψ,ι

ϕ ]k, which encodes the unfolding of the transition relation of
Mϕ fk(ψ)-times to the depth k, is defined as follows:

[Mψ,ι
ϕ ]k :=

∨
s∈ι

Is(w0,0) ∧
fk(ψ)∧
n=1

k−1∧
m=0

T (wm,n,am,n,wm+1,n).

The next step is a translation of a EyCTLK formula ψ to a propositional
formula [ψ]Mϕ,k := [ψ]

[0,0,Fk(ψ)]
k , where [α]

[m,n,A]
k denotes the translation of

α at the symbolic state wm,n by using the set A ⊆ Fk(ψ). To define
[ψ]

[0,0,Fk(ψ)]
k , we have to know how to divide the set Fk(ψ) into subsets
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needed for translating the subformulae of ψ. To accomplish this goal we
use some auxiliary functions (gl, gr, gs, hU

k , h
G
k ) that were defined in [16].

Let Mϕ be a model, ψ a EyCTLK formula, and k ≥ 0 a bound. The
formula [ψ]

[0,0,Fk(ψ)]
k that encodes the bounded semantics for EyCTLK is

inductively defined as shown below.
Namely, let 0 6 n < fk(ψ), m 6 k, n′=min(A), hU

k = hU
k (gs(A), fk(β)),

and hG
k = hG

k (gs(A), fk(α)).
[>]

[m,n,A]
k := >, [⊥]

[m,n,A]
k := ⊥,

[p]
[m,n,A]
k := p(wm,n), [¬p][m,n,A]

k := ¬p(wm,n),

[α ∧ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

[α ∨ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

[Ey(αUβ)]
[m,n,A]
k := Ty(wm,n,w0,n′) ∧

k∨
i=0

([β]
[i,n′,hUk (k)]

k ∧
i−1∧
j=0

[α]
[j, n′,hUk (j)]

k ),

[EyGα]
[m,n,A]
k := Ty(wm,n,w0,n′)∧

k∧
j=0

[α]
[j,n′,hGk (k)]

k ∧
k∨
l=0

H(wk,n′ ,wl,n′),

[Kcα]
[m,n,A]
k := (

∨
s∈ι

Is(w0,n′)) ∧
k∨
j=0

([α]
[j,n′,gµ(A)]
k ∧Hc(wm,n,wj,n′)),

[DΓα]
[m,n,A]
k := (

∨
s∈ι
Is(w0,n′))∧

k∨
j=0

([α]
[j,n′,gµ(A)]
k ∧

∧
c∈Γ

Hc(wm,n,wj,n′)),

[EΓα]
[m,n,A]
k := (

∨
s∈ι
Is(w0,n′))∧

k∨
j=0

([α]
[j,n′,gµ(A)]
k ∧

∨
c∈Γ

Hc(wm,n,wj,n′)),

[CΓα]
[m,n,A]
k := [

k∨
j=1

(EΓ)jα]
[m,n,A]
k .

The following theorem guarantees that the BMC problem for EyCTLK
and for an augmented timed interpreted system can be reduced to the SAT-
problem. The theorem can be proven by induction on the length of the
formula ψ.

Theorem 3. LetMϕ be an abstract model, and ψ an EyCTLK formula. For
every k ∈ IN, Mϕ |=k ψ if, and only if, the propositional formula [Mϕ, ψ]k
is satisfiable.

5. Conclusions

We have defined an SAT-based BMC for timed interpreted system and for
properties expressed in RTECTLK. The method is based on a translation of
the model checking problem for RTECTLK to the model checking problem
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for EyCTLK, and then on the translation of the model checking problem
for EyCTLK to the SAT-problem.

In [8] a formalism of real time interpreted systems (RTIS) has been de-
fined to model MASs with hard real-time deadlines and an SAT-based BMC
for the existential version of the timed CTLK (TECTLK) has been defined.
However, in contrast to the semantics adopted in this work, the semantics
of the RTIS model is asynchronous, the agents are just pure timed au-
tomata, and the EyCTLK logic is interpreted on the region graph for timed
automata.

In the future, we plan to implement and experimentally evaluate the
proposed SAT-based BMC. Next, we plan to define SMT-based BMC for
TIS and for RTECTLK, and compare it with the SAT-based one.
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