PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of Industrial Textile Wastewater in Biological Aerated Filters – Microbial Diversity Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie ścieków włókienniczych w złożach zanurzonych – analiza bioróżnorodności drobnoustrojów
Języki publikacji
EN
Abstrakty
EN
Investigated herein was the biodegradation of highly contaminated textile wastewater on a laboratory scale, with biological aerobic filters as a single treatment and in combination with the coagulation/flocculation process. Among the three support materials tested (Intalox saddles, ceramsite and beach shavings), the highest organic carbon compound removals (above 60% measured as COD and TOC) and steady operation were obtained for ceramsite. Effective and stable biological treatment was possible thanks to the development of biofilm of high bacterial and fungal diversity. The biodiversity of microflora was estimated on the basis of metagenomic analysis. The coagulation process with PAX 18 was effective in total phosphorus depletion (94%), while the coagulant Epoly CRD enabled up to 99% colour removal. The best results were obtained after the combined treatment, in which biodegradation was followed by coagulation (PAX 18). Such a combination enabled the removal of 98% of BOD5, 87% of COD, 88% of TOC, 48% of the total nitrogen, 98% of the total phosphorus, 98% of toxicity (towards Vibrio fisheri) and above 81% of colour.
PL
Procesy wykończalnicze stosowane w przemyśle włókienniczym generują olbrzymie ilości ścieków, zaś zamykanie obiegów wody w farbiarniach jest najlepszym rozwiązaniem z punktu widzenia zrównoważonego rozwoju. Jedną z możliwości ponownego wykorzystania wody jest podział ścieków na dwa strumienie – mniej i bardziej obciążony zanieczyszczeniami. Strumień mniej obciążony może być, po odpowiednim oczyszczeniu zaawansowanymi metodami, zawrócony jako woda procesowa, natomiast strumień bardziej zanieczyszczony unieszkodliwiony. Niniejszy artykuł prezentuje wyniki unieszkodliwiania bardziej zanieczyszczonego strumienia za pomocą biodegradacji w złożach zanurzonych – samodzielnie oraz w połączeniu z koagulacją. Efektywność i stabilność procesów biologicznych została osiągnięta dzięki wpracowaniu biofilmu o wysokiej genotypowej bioróżnorodności – zarówno bakterii jak i grzybów. Bioróżnorodność mikroflory została oszacowana na podstawie analizy metagenomicznej. Najlepsze rezultaty zostały osiągnięte w sekwencji biodegradacja przed koagulacją. Taki układ umożliwił usunięcie ponad 98% BZT5, 87% ChZT, 88% OWO, 48% azotu całkowitego, 98% fosforu całkowitego, 98% toksyczności (w stosunku do bakterii Vibrio fisheri) oraz ponad 81% barwy.
Rocznik
Strony
106--114
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wolczanska 213, Lodz 90-924, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wolczanska 213, Lodz 90-924, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wolczanska 213, Lodz 90-924, Poland
Bibliografia
  • 1. The European Commission. Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques for the Textiles Industry. 2003; 626. Available from: http://eippcb.jrc.ec.europa.eu/reference/.
  • 2. Sójka-Ledakowicz J, Kos L, Żyłła R, Paździor K, Ledakowicz S. Studies on the Use of Water Reclaimed from Textile Wastewater in a Closed Circuit. FIBRES & TEXTILES in Eastern Europe 2017; 25, 5(125): 61-66. DOI: 10.5604/01.3001.0010.4629.
  • 3. Bilińska L, Gmurek M, Ledakowicz S. Comparison Between Industrial and Simulated Textile Wastewater Treatment by AOPS – Biodegradability, Toxicity and Cost Assessment. Chem. Eng. J. 2016; 306: 550-559.
  • 4. Vajnhandl S, Valh JV. The Status of Water Reuse in European Textile Sector. J. Environ. Manage. [Internet]. 2014;141:29-35. Available from: http://dx.doi.org/10.1016/j.jenvman.2014.03.014.
  • 5. Holkar CR, Jadhav AJ, Pinjari D V, et al. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manage. [Internet]. 2016; 182:351–366. Available from: http://dx.doi.org/10.1016/j.jenvman.2016.07.090.
  • 6. Güyer GT, Nadeem K, Dizge N. Recycling of Pad-Batch Washing Textile Wastewater through Advanced Oxidation Processes and its Reusability Assessment for Turkish Textile Industry. J. Clean. Prod. 2016; 139: 488-494.
  • 7. Imran M, Crowley DE, Khalid A, et al. Microbial Biotechnology for Decolorization of Textile Wastewaters. Rev. Environ. Sci. Biotechnol. 2014; 14: 73-92.
  • 8. Freitas TKFS, Oliveira VM, Souza MTF De, et al. Optimization of CoagulationFlocculation Process for Treatment of Industrial Textile Wastewater Using Okra (A. Esculentus) Mucilage as Natural Coagulant 2015; 76: 538-544.
  • 9. Frijters CTMJ, Vos RH, Scheffer G, et al. Decolorizing and Detoxifying Textile Wastewater, Containing Both Soluble and Insoluble Dyes. In a Full Scale Combined Anaerobic/Aerobic System. Water Res. 2006; 40: 1249-1257.
  • 10. Klepacz-Smółka A, Sójka-Ledakowicz J, Ledakowicz S. Biological Treatment of Post-Nanofiltration Concentrate of Real Textile Wastewater. FIBRES & TEXTILES in Eastern Europe 2015; 23, 4(112): 138-143. DOI: 10.5604/12303666.1152748.
  • 11. Manai I, Miladi B, El Mselmi A, et al. Industrial Textile Effluent Decolourization in Stirred and Static Batch Cultures of a New Fungal Strain Chaetomium Globosum IMA1 KJ472923. J. Environ. Manage 2016; 170: 8-14.
  • 12. Kaushik P, Malik A. Fungal Dye Decolourization: Recent Advances and Future Potential. Environ. Int. [Internet]. 2009; 35:127-141. Available from: http://dx.doi.org/10.1016/j.envint.2008.05.010.
  • 13. Punzi M, Anbalagan A, Aragão Börner R, et al. Degradation of a Textile Azo Dye Using Biological Treatment Followed by Photo-Fenton Oxidation: Evaluation of Toxicity and Microbial Community Structure. Chem. Eng. J. [Internet]. 2015;270:290-299. Available from: http://dx.doi.org/10.1016/j.cej.2015.02.042.
  • 14. Novotný Č, Svobodová K, Benada O, et al. Potential of Combined Fungal and Bacterial Treatment for Color Removal in Textile Wastewater. Bioresour. Technol. 2011; 102: 879-888.
  • 15. Kang Y, Won T, Hyun K. Efficient Treatment of Real Textile Wastewater: Performance of Activated Sludge and Biofilter Systems with a High-Rate Filter as a Pre-Treatment Process. KSCE J. Civ. Eng. 2012; 16: 308-315.
  • 16. Chang W, Hong S, Park J. Effect of Zeolite Media for the Treatment of Textile Wastewater in a Biological Aerated Filter. Process Biochem. 2002; 37: 693-698.
  • 17. Kornaros M, Lyberatos G. Biological Treatment of Wastewaters from a Dye Manufacturing Company Using a Trickling Filter. J. Hazard. Mater. 2006; 136: 95-102.
  • 18. Yang Q, Wang J, Wang H, et al. Evolution of the Microbial Community in a Full-Scale Printing and Dyeing Wastewater Treatment System. Bioresour. Technol. [Internet]. 2012;117:155-163. Available from: http://dx.doi.org/10.1016/j.biortech.2012.04.059.
  • 19. Chaudhari AU, Paul D, Dhotre D, et al. Effective Biotransformation and Detoxification of Anthraquinone Dye Reactive Blue 4 by Using Aerobic Bacterial Granules. Water Res. [Internet]. 2017;122:603–613.Available from:http://www.sciencedirect.com/science/article/pii/S0043135417304797?dgcid=raven_sd_aip_email.
  • 20. Shi S, Qu Y, Ma Q, et al. Performance and Microbial Community Dynamics in Bioaugmented Aerated Filter Reactor Treating with Coking Wastewater. Bioresour. Technol. [Internet]. 2015;190:159–166. Available from: http://dx.doi.org/10.1016/j.biortech.2015.04.075.
  • 21. Yang Y, Chen Z, Wang X, et al. Partial Nitrification Performance And Mechanism Of Zeolite Biological Aerated Filter For Ammonium Wastewater Treatment. Bioresour. Technol. 2017; 241: 473-481.
  • 22. Gao XY, Xu Y, Liu Y, et al. Bacterial Diversity, Community Structure and Function Associated with Biofilm Development In a Biological Aerated Filter In a Recirculating Marine Aquaculture System. Mar. Biodivers. [Internet]. 2012;42:1-11. Available from: http://link.springer.com/10.1007/s12526-011-0086-z.
  • 23. Ellouze E, Tahri N, Amar R Ben. Enhancement of Textile Wastewater Treatment Process using Nanofiltration. Desalination. 2012; 286: 16-23.
  • 24. GilPavas, E., Dobrosz-Gómez, I. Gómez-& García MA. Coagulation-Fl Occulation Sequential with Fenton or Photo-Fenton Processes as an Alternative for the Industrial Textile Wastewater Treatment. J. Environ. Manage. 2017; 191: 189-197.
  • 25. Verma AK, Dash RR, Bhunia P. A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters [Internet]. J. Environ. Manage. Elsevier Ltd; 2012. p. 154-168. Available from: http://dx.doi.org/10.1016/j.jenvman.2011.09.012.
  • 26. Khouni I, Marrot B, Moulin P, et al. Decolourization of the Reconstituted Textile Effluent by Different Process Treatments : Enzymatic Catalysis, Coagulation/Flocculation and Nano Filtration Processes. Desalination [Internet]. 2011; 268: 27-37. Available from: http://dx.doi.org/10.1016/j.desal.2010.09.046.
  • 27. GilPavasa E, Dobrosz-Gómez I, Gómez-García M A. Coagulation-Flocculation Sequential with Fenton or Photo-Fenton Processes as an Alternative for the Industrial Textile Wastewater Treatment. J. Environ. Manage 2017; 191: 189-197.
  • 28. Bilińska L, Biliński K, Ledakowicz S. Ocena efektywności procesu koagulacji ścieków włókienniczych w warunkach przemysłowych. Inżynieria i Apar. Chem. 2015; 54: 143-145.
  • 29. Wrębiak J, Paździor K, Klepacz-Smółka A, et al. Treatment of Wastewater from Textile Industry in Biological Aerated Filters. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press; [cited 2017 Aug 30]. p. 145-154. Available from: http://www.crcnetbase.com/doi/10.1201/9781315281971-21.
  • 30. Anonymous. Decolorizing and Clarifying Flocculant for Waste Water. Eksoy, Manuf. Descr. [Internet]. 2015; Available from: http://www.eksoy.com/PDF/FLAYER/EPOLY_CRD.pdf.
  • 31. Loosdrecht MCM van, Nielsen PH, Lopez-Vazquez CM, et al. Experimental Methods in Wastewater Treatment [Internet]. IWA Publ. 2016. Available from: http://www.iwapublishing.com/books/9781780404745/experimental-methods-wastewater-treatment.
  • 32. Greenberg AE, Clesceri LS, Eaton AD, et al. Standard methods for the examination of water and wastewater. American Public Health Association; 1992.
  • 33. Zhang J, Kobert K, Flouri T, et al. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014; 30: 614-620.
  • 34. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods [Internet]. 2010; 7: 335-336. Available from: http://dx.doi.org/10.1038/nmeth0510-335.
  • 35. Edgar RC. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods [Internet]. 2013;10:996-998. Available from: http://dx.doi.org/10.1038/nmeth.2604.
  • 36. McDonald D, Price MN, Goodrich J, et al. An Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary Analyses of Bacteria and Archaea. ISME J. [Internet]. 2012; 6: 610-618. Available from: http://www.nature.com/doifinder/10.1038/ismej.2011.139.
  • 37. Mokhtar NM, Lau WJ, Ismail AF, et al. The Potential of Direct Contact Membrane Distillation for Industrial Textile Wastewater Treatment Using PVDF-Cloisite 15A Nanocomposite Membrane. Chem. Eng. Res. Des. [Internet]. 2016;111:284-293. Available from: http://dx.doi.org/10.1016/j.cherd.2016.05.018.
  • 38. Gottschalk C (Christiane), Libra JA (Judy A., Saupe A (Adrian). Ozonation of Water and Waste Water: A Practical Guide To Understanding Ozone and its Applications. Wiley-VCH; 2010.
  • 39. Persoone G, Marsalek B, Blinova I, et al. A Practical and User-Friendly Toxicity Classification System with Microbiotests for Natural Waters and Wastewaters.Environ. Toxicol. 2003; 18: 395-402.
  • 40. Ito T, Adachi Y, Yamanashi Y, et al. Long-term Natural Remediation Process in Textile Dye-Polluted River Sediment Driven by Bacterial Community Changes. Water Res. [Internet]. 2016; 100: 458-465. Available from: http://dx.doi.org/10.1016/j.watres.2016.05.050.
  • 41. Manai I, Miladi B, El Mselmi A, et al. Improvement of Activated Sludge Resistance to Shock Loading by Fungal Enzyme Addition During Textile Wastewater Treatment. Environ. Technol. (United Kingdom). 2017; 38: 880-890.
  • 42. Perry RN, Moens M. Plant nematology. 2nd ed. Perry RN, Moens M, editors. Flanders Research Institute for Agriculture, Fisheries and Food, Belgium; 2006.
  • 43. Den BE, Jansen E. Saprophytic and Predacious Abilities in Arthrobotrys Oligospora in Relation to Dead and Living Root-Knot Nematodes. Fundam. Appl. Nematol. [Internet]. 1994;17:423-431. Available from: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/fan/40780.pdf.
  • 44. Chhabra M, Mishra S, Sreekrishnan TR, et al. Combination of Chemical and Enzymatic Treatment for Efficient Decolorization/Degradation of Textile Effluent: High Operational Stability of the Continuous Process. Biochem. Eng. J. [Internet]. 2015;93:17-24. Available from: http://dx.doi.org/10.1016/j.bej.2014.09.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aecceaba-60e3-4cd3-b265-e864ebca27d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.