Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The final accuracy of the parts formed using single point incremental forming greatly depends on the mechanical properties of the material to be formed and the residual stress formation. In this paper, an X-ray diffraction technique was used to study the distribution of the residual stress along the generating line of the conical drawpiece. A DC04 steel sheet with a thickness of 0.8 mm was used as a test material. The basic mechanical properties of the DC04 sheet metal were determined in the uniaxial tensile test according to the EN ISO 6892–1:2016. It was found that the maximum amount of the residual stress existed in a point located in the midway between a base and a truncation of the drawpiece. In the outer surface of the drawpiece, the orange peel defect associated with a rough surface appearance after SPIF a drawpiece, was observed. In contrast, the inner surface of component was characterized by linear grooves associated with the interaction of tool tip with the sheet surface. This defect is mainly influenced by vertical step size.
Wydawca
Rocznik
Tom
Strony
103--111
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- State School of Higher Vocational Education, Krosno, Poland
autor
- Department of Manufacturing and Production Engineering, Rzeszow University of Technology, Rzeszów, Poland
autor
- Department of Materials Forming and Processing, Rzeszow University of Technology, Rzeszów, Poland
autor
- Department of Mechanics and Machine Building, University of Rzeszow, Rzeszów, Poland
autor
- Institute of Technology and Material Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Košice, Slovakia
Bibliografia
- 1. Ai S., Lu B., Chen J., Long H., Ou H. Evaluation of deformation stability and fracture mechanism in incremental sheet forming. International Journal of Mechanical Sciences, 124–125, 2017, 174–184.
- 2. Aldo A., Ceretti E., Giardini C. Optimization of tool path in two points incremental forming. Journal of Materials Processing Technology, 177(1–3), 2006, 409–412.
- 3. Bedan A.S., Mohammed S., Kamal M. The effects of process parameters on residual stresses in single point incremental forming of A1050 aluminium using ANOVA model. Engineering Technology Journal, 35(1), 2017, 41–48.
- 4. Bragg W.H., Bragg, W.L. The reflexion of X-rays by crystals. Proceeding of the Royal Society A, 88(605), 1913, 428–38.
- 5. Durante M., Formisano A., Langella A., Minutolo F.M.C. The influence of tool rotation on an incremental forming process. Journal of Materials Processing Technology, 209(9), 2009, 4621–4626.
- 6. Ham M., Powers B.M., Loiselle J. Surface topography from single point incremental forming using an acetal tool. Key Engineering Materials, 549, 2013, 84–91.
- 7. Jiménez I., López C., Martinez-Romero O., Mares P., Siller H.R., Diabb J., Sandoval-Robles J.A., Elías-Zúńiga A. Investigation of residual stress distribution in single point incremental forming of aluminum parts by X-ray diffraction technique. International Journal of Advanced Manufacturing Technology, 91, 2017, 2571–2580.
- 8. Khalil U., Aziz M.H., Jahanzaib M., Ahmad W., Husssin S., Hafeez F.: Effects of forming tools and process parameters on surface roughness in incremental sheet forming. Advances in Science and Technology Research Journal, 12(3), 2018, 75–95.
- 9. Klimek L., Was-Solipiwo J.; Dybowski K. Effect of aluminium and magnesium on the corrosion resistance of zinc coatings, Advances in Science and Technology Research Journal, 11(2), 2017, 28–32.
- 10. Kumar A., Gulati V., Kumar P. Investigation of surface roughness in incremental sheet forming. Procedia Computer Science, 133, 2008, 1014–1020.
- 11. Li Y, Liu F., Xu C., Zhai W., Zhou L., Li F., Li J. Investigation of the effect of process parameters on energy consumption in incremental sheet forming. Procedia CIRP, 80, 2019, 50–55.
- 12. Lu B., Fang Y., Xu D., Chen J., Ou H., Moser N., Cao J. Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. International Journal of Machine Tools and Manufacture 85, 2014, 14–29.
- 13. Maaß F., Hahn M., Dobecki M., Thannhäuser E., Tekkaya A.E., Reimers W. Influence of tool path strategies on the residual stress development in single point incremental forming. Procedia Manufacturing, 29, 2019, 53–58.
- 14. Maqbool F., Hajavifard R., Walther F., Bambuch M. Experimental investigation and finite element modelling of residual stress control in disc springs made of metastable austenitic stainless steel (MASS) using incremental sheet forming (ISF). Procedia Manufacturing, 29, 2019, 12–20.
- 15. Milutinovic M., Lendel R., Potran M., Vilotic D., Skakun P., Plancak M. Application od single point incremental forming for manufacturing of denture base. Journal of Technology of Plasticity, 39(2), 2014, 15–24.
- 16. Monine V.I., Filho J.C.P., Gonzaga R.S., Passos E.K.D., Assis J.T.: X-ray diffraction technique for residual stress measureent in NiCrMo alloy weld metal. Advances in Materials Science and Engineering, 2018, 2018, 8986423.
- 17. Sepsi M., Cseh D., Filep A., Benke M., Mertinger V. Innovation methods for residual stress determination for the automotive industry. [in] Jármai K., Bolló B. Vehicle and Automotive Engoneering, Springer, 2017 p. 483–497.
- 18. Sherbiny M.E., Zein H., Abd-Rabou M., Shazly M.E.: Thinning and residual stresses of sheet metal in the deep drawing proces. Materials and Design, 55, 2014, 869–879.
- 19. Trzepieciński T., Lemu H.G. Effect of computational parameters on springback prediction by numerical simulation. Metals, 7, 2017, 380.
- 20. Xu D., Wu W., Malhotra R., Chen J., Lu B., Cao J. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 73, 2013, 37–46.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aeba00c7-a865-4b03-94a3-d797a446d6b6