PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperspectral imaging - a short review of methods and applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper takes a look at the state-of-the-art solutions in the field of spectral imaging systems by way of application examples. It is based on a comparison of currently used systems and the challenges they face, especially in the field of high-altitude imaging and satellite imaging, are discussed. Based on our own experience, an example of hyperspectral data processing is presented. The article also discusses how modern algorithms can help in understanding the data that such images can provide.
Rocznik
Strony
637--654
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Scanway, Duńska 9, 54-427 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Scanway, Duńska 9, 54-427 Wrocław, Poland
  • Scanway, Duńska 9, 54-427 Wrocław, Poland
Bibliografia
  • [1] Barrett, H. H., & Myers, K. J. (2013). Foundations of image science. John Wiley & Sons.
  • [2] Manolakis, D. G., Lockwood, R. B., & Cooley, T. (2016). Hyperspectral Imaging Remote Sensing: physics, sensors, and algorithms. Cambridge University Press
  • [3] Qian, S-E (2020). Hyperspectral Satellites and Systems Design. CRC Press
  • [4] Zhang, W., & Zhao, L. (2022). The track, hotspot and frontier of international hyperspectral remote sensing research 2009-2019 - A bibliometric analysis based on SCI database. Measurement, 187, 110229. https://doi.org/10.1016/j.measurement.2021.110229
  • [5] Huang, C., Tanaka T., Kagami, S., Ninomiya, Y., Kakuda, M., Watanabe, K., Inoue, S., Nanba, K., Igarashi, Y., Yamamoto, T., Shibuya, A., Nakahara, K., Arakawa, Y., & Yorozu, S. (2020). Multispectral imaging of mineral samples by infrared quantum dot focal plane array sensors. Measurement, 159, 107775. https://doi.org/10.1016/j.measurement.2020.107775
  • [6] Pudełłko, A., Chodak, M., Roemer, J., & Uhl, T. (2020). Application of FT-NIR spectroscopy and NIR hyperspectral imaging to predict nitrogen and organic carbon contents in mine soils. Measurement, 164, 108117. https://doi.org/10.1016/j.measurement.2020.108117
  • [7] Landgrebe, D. A. (2005). Multispectral land sensing: where from, where to? IEEE Transactions on Geoscience and Remote Sensing, 43(3), 414-421. https://doi.org/10.1109/tgrs.2004.837327
  • [8] Goetz, A. F. H., & Srivastava, V. (1985). Mineralogical mapping in the Cuprite Mining District, Nevada. Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop (pp. 22-31). Pasadena, CA: JPL Publication 85-41.
  • [9] NASA. Moderate Resolution Imaging Spectroradiometer, Retrieved March, 2023, https://modis.gsfc.nasa.gov/about/specifications.php
  • [10] ESA. Satellite Mission Catalogue, E)-1 (Earth Observing-1), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/eo-1
  • [11] ESA. Satellite Mission Catalogue, PROBA-1 (Project for On-Board Autonomy - 1), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/proba-1
  • [12] ESA. Satellite Mission Catalogue, ADEOS-II (Advanced Earth Observing Satellite-II) / Midori-II, eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/adeos-ii
  • [13] ESA. Satellite Mission Catalogue, IMS-1 (Indian Microsatellite-1), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/ims-1
  • [14] ESA. Satellite Mission Catalogue, HySIS (HyperSpectral Imaging Satellite), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/hysis
  • [15] ESA. Satellite Mission Catalogue, PRISMA (Hyperspectral), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/prisma-hyperspectral
  • [16] ESA. Satellite Mission Catalogue, Jilin Constellation, eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/jilin-con
  • [17] ESA. Satellite Mission Catalogue, ISS Utilization: HISUI (Hyperspectral Imager Suite), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/iss-hisui
  • [18] ESA. Satellite Mission Catalogue, GEO-KOMPSAT-2, eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/geo-kompsat-2
  • [19] University of Twente. EOS-3 (GISAT-1), Retrieved March, 2023, https://webapps.itc.utwente.nl/sensor/getsat.aspx?name=EOS-3%20(GISAT-1)
  • [20] ESA. Satellite Mission Catalogue, EnMAP (Environmental Monitoring and Analysis Program), eoPotral, https://www.eoportal.org/satellite-missions/enmap
  • [21] Satellite Mission Catalogue, TEMPO (Tropospheric Emissions: Monitoring of Pollution), eoPotral, ESA, https://www.eoportal.org/satellite-missions/tempo
  • [22] Intuition-1 Mission, KP LABS, https://kplabs.space/intuition-1/
  • [23] Lee, C. M., Cable, M. L., Hook, S. J., Green, R. O., Ustin, S. L., Mandl, D., & Middleton, E. M. (2015). An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sensing of Environment, 167, 6-19. https://doi.org/10.1016/j.rse.2015.06.012
  • [24] ESA. Satellite Mission Catalogue, MetOp-SG (MetOp-Second Generation Program), eoPotral, Retrieved March, 2023, https://www.eoportal.org/satellite-missions/metop-sg
  • [25] Observing Systems Capability Analysis and Review Tool, World Meteorological Organization, MTG-S1, https://space.oscar.wmo.int/satellites/view/mtg_s1
  • [26] Corning (2017). microHSI 410 SHARK Brochure, https://www.corning.com/microsites/coc/oem/documents/hyperspectral-imaging/Corning-MicroHSI-410-SHARK-Brochure.pdf
  • [27] Cubert GmbH. ULTRIS X20 PLUS, Retrieved March, 2023, https://www.cubert-hyperspectral.com/products/ultris-x20-plus
  • [28] Eldim. EZLITE HxS, Retrieved March, 2023, https://eldim.biz/products/viewing-angle-multi-spectral/ezlite-hxs/
  • [29] EVK DI KERSCHHAGGL GMBH. EVK HELIOS EQ32, Retrieved March, 2023, https://www.evk.biz/en/products/hyperspectral-camera/evk-helios-eq32/
  • [30] Private communication
  • [31] HySpex. Hyspex Cameras. Retrieved March, 2023, https://www.hyspex.com/hyspex-products
  • [32] Imec, Cameras, Retrieved March, 2023, https://www.imechyperspectral.com/en/cameras
  • [33] Inno-Spec, Retrieved March, 2023, https://inno-spec.de/en/home-en-2/
  • [34] JAI, FS-3200D-10GE, Retrieved March, 2023, https://www.jai.com/products/fs-3200d-10ge
  • [35] LLA Instruments GmbH & Co. KG, Analytical equipment for sorting machines in recycling, Retrieved March, 2023, https://configurator.lla-instruments.de
  • [36] MicaSense, RedEdge-MX Dual Camera System, Retrieved March, 2023, https://support.micasense.com/hc/en-us/articles/360037369993-RedEdge-MX-Dual-Camera-System-Integration-Guide
  • [37] Ocean Insight, FluxData, Retrieved March, 2023, https://www.oceaninsight.com/fluxdata
  • [38] Specim, Retrieved March, 2023, https://www.specim.com/products/
  • [39] Isaza, C., Mosquera, J. M., Gómez-Méndez, G. A., Paz, Z. D., Jonny, P., Karina-Anaya, E., Rizzo-Sierra, J. A., & Palillero-Sandoval, O. (2019). Development of an acousto-optic system for hyperspectral image segmentation, Metrology and Measurements Systems, 26(3), 517-53. https://doi.org/10.24425/ mms.2019.129576
  • [40] Hilal, A. M., Al-Wesabi, F. N., Althobaiti, M. M., Al Duhayyim, M., Hamza, M. A., Kadry, S., & Rizwanullah, M. (2022). An Intelligent deep learning based hyperspectral Signal classification scheme for complex measurement systems. Measurement, 188, 110540. https://doi.org/10.1016/j.measurement.2021.110540
  • [41] Ismail, M., & Orlandić, M. (2020). Segment-based clustering of hyperspectral images using tree-based data partitioning structures. Algorithms, 13(12), 330. https://doi.org/10.3390/a13120330
  • [42] Index DataBase, A database for remote sensing indices. Retrieved March, 2023, https://www.indexdatabase.de/db/s-single.php?id=84
  • [43] Basedow, R., Silverglate, P., Rappoport, W., Rockwell, R., Rosenberg, D., Shu, K., Whittlesey, R., & Zalewski, E. (1993). The HYDICE Instrument Design and Its Application to Planetary Instruments, Lunar and Planetary Inst., Workshop on Advanced Technologies for Planetary Instruments, Part 1
  • [44] Geospatial Research Laboratory (U.S.). HyperCube Sample Data Set: HYDICE sensor imagery URBAN, Retrieved March, 2023, http://hdl.handle.net/11681/2925
  • [45] Resonon. Hyperspectral Software, Retrieved March, 2023, https://resonon.com/software
  • [46] Singh, S. (1999). Diffraction gratings: aberrations and applications. Optics & Laser Technology, 31(3), 195-218. https://doi.org/10.1016/S0030-3992(99)00019-5
  • [47] Imamoglu, N., Oishi, Y., Zhang, X., Ding, G., Fang, Y., Kouyama, T., & Nakamura, R. (2018, May). Hyperspectral image dataset for benchmarking on salient object detection. In 2018 Tenth international conference on quality of multimedia experience (qoMEX) (pp. 1-3). IEEE. https://doi.org/10.1109/QoMEX.2018.8463428
  • [48] Multispec. A Freeware Multispectral Image Data Analysis System, https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
  • [49] Hyperspectral Remote Sensing Scenes, https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
  • [50] Seeing Beyond the Visible challenge, https://github.com/AI4EO/kp-labs-seeing-beyond-visible-challenge
  • [51] Nalepa, J., Saux, B. L., Longépé, N., Tulczyjew, L., Myller, M., Kawulok, M., Smykala, K., & Gumiela, M. (2022). The Hyperview Challenge: Estimating Soil Parameters from Hyperspectral Images. In 2022 IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/icip46576.2022.9897443
  • [52] Kuzu, R. S., Albrecht, F., Arnold, C., Kamath, R., & Konen, K. (2022). Predicting Soil Properties from Hyperspectral Satellite Images. In 2022 IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/icip46576.2022.9897254
  • [53] Hihara, H., Moritani, K., Inoue, M., Hoshi, Y., Iwasaki, A., Takada, J., Inada, H., Suzuki, M., Seki, T., Ichikawa, S., & Tanii, J. (2015). Onboard image processing system for hyperspectral sensor. Sensors, 15(10), 24926-24944. https://doi.org/10.3390/s151024926
  • [54] Kahraman, S., & Bacher, R. (2021). A comprehensive review of hyperspectral data fusion with lidar and sar data. Annual Reviews in Control, 51, 236-253. https://doi.org/10.1016/j.arcontrol.2021.03.003
  • [55] Sivakumar, V., Neelakantan, R., & Santosh, M. (2017). Lunar surface mineralogy using hyperspectral data: Implications for primordial crust in the Earth-Moon system. Geoscience Frontiers, 8(3), 457-465. https://doi.org/10.1016/j.gsf.2016.03.005
  • [56] Chen, C., Tseng, Y., Mukundan, A., & Wang, H. (2021). Air pollution: Sensitive detection of PM2.5 and PM10 concentration using hyperspectral imaging. Applied Sciences, 11(10), 4543. https://doi.org/10.3390/app11104543
Uwagi
This paper was supported by the Ministry of Education and Science, Poland within the framework of the research project PhD Implementation, 5th Edition: “Methodologies for Acquisition, Processing and Analysis of Optical Hyperspectral Data in Industrial, Space, Mining and Agricultural Applications”, (grant #DWD/5/0280/2021, 2021-2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aeb438df-99b8-4310-87fa-729eb996a746
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.