PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

eBalticGrid – an interactive platform for the visualisation of results from a high-resolution operational Baltic Sea model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, modelling has been one of the fastest growing fields of science. Ocean, ice and atmospheric models have become a powerful tool that has supported many scientific fields during the last few decades. Our work presents the new operational service – called eBalticGrid – implemented into the PLGrid Infrastructure (Dziekoński et al. 2014). The grid is based on three modelling tools – an ocean model (Parallel Ocean Program), an ice model (Community Ice Code) and an atmospheric model (Whether Research and Forecasting Model). The service provides access to 72-hour forecasts for the Baltic Sea area. It includes the physical state of the Baltic Sea, its ice cover and the main atmospheric fields, which are the key drivers of the Baltic’s physical state. Unlike other services, this provides the additional three-dimensional fields of temperature, salinity and currents in the Baltic Sea. The models work in operational mode and currently one simulation per day is run. The service has been implemented mostly for researchers. Access to the results does not require any modelling knowledge. Therefore, the main interface between a user and the model results was designed as a portal providing easy access to the model’s output. It will also be a very suitable tool for teaching students about the hydrology of the Baltic Sea. Data from the system are delivered to another operational system – SatBaltic (Woźniak et al. 2011). The development of an output format to be suitable for navigational software (GRIB files) and sharing via FTP is also planned.
Twórcy
autor
  • Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
autor
  • Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Technical University of Gdańsk, Academic Computer Centre TASK, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Technical University of Gdańsk, Academic Computer Centre TASK, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Technical University of Gdańsk, Academic Computer Centre TASK, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Technical University of Gdańsk, Academic Computer Centre TASK, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Arakawa A., Lamb V.R., 1977, Computational design of the basic dynamic processes of the UCLA general circulation model, Methods in Computational Physics, 17, 173-265
  • 2. Bitz C.M., Lipscomb W.H., 1999, An energy-conserving thermodynamic model of sea ice, Journal of Geophysical Research, 104 (C7), 15669-15677, DOI: 10.1029/1999JC900100
  • 3. Craig A., Jacob R., Kauffman B., Bettge T., Larson J., Ong E., He H., 2005, CPL6: The new extensible, high-performance parallel coupler for the Community Climate System Model, The International Journal of High Performance Computing Applications, 19 (3), 309-328
  • 4. Craig A.P., Mickelson S., Hunke E.C., Bailey D.A., 2015, Improved parallel performance of the CICE model in CESM1, International Journal of High Performance Computing Applications, 29 (2), 154-165
  • 5. Craig A.P., Vertenstein M., Jacob R., 2012, A new flexible coupler for earth system modelling developed for CCSM4 and CESM1, The International Journal of High Performance Computing Applications, 26 (1), 31-42
  • 6. Dziekoński P., Klajn F., Flis Ł., Lasoń P., Magryś M., Oziębło A., Rowicki R., Stolarek M., Bartkiewicz D., Zawadzki M., Pospieszny M., Mikołajczak R., Brzeźniak M., Meyer N., Samson M., 2014, National distributed high performance computing infrastructure for PL-Grid users, [in:] eScience on distributed computing infrastructure, M. Bubak, J. Kitowski, K. Wiatr (eds.), Lecture Notes in Computer Science Series, 8500, 16-33, DOI: 10.1007/978-3-319-10894-0_2
  • 7. Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2013a, Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part, Oceanologia, 55 (3), 519-541, DOI: 10.5697/oc.55-3.519
  • 8. Dzierzbicka-Głowacka L., Janecki M., Nowicki A., Jakacki J., 2013b, Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module, Oceanologia, 55 (3), 543-572, DOI: 10.5697/oc.55-3.543
  • 9. Funkquist L., Ljungemyr P., 1997, Validation of HIROMB during 1995-1996, SMHO Oceanografi, 67, 10 pp.
  • 10. Hu Y., Huang X., Wang X., Fu H., Xu S., Ruan H., Xue W., Yang G., 2013, A scalable barotropic mode solver for the Parallel Ocean Program, [in:] Euro-Par 2013 Parallel Processing, F. Wolf, D an Mey (eds.), Lecture Notes in Computer Science Series, 8097, 739-750, DOI: 10.1007/978-3-642-40047-6_74
  • 11. Hunke E.C., 2001, Viscous-plastic sea ice dynamics with the EVP model: Linearization issues, Journal of Computational Physics, 170 (1), 18-38, DOI: 10.1006/jcph.2001.6710
  • 12. Hunke E.C., Dukowicz J.K., 1997, An elastic-viscous-plastic model for sea ice dynamics, Journal of Physical Oceanography, 27, 1849-1867, DOI: 10.1175/1520-0485(1997)027<1849:AEV PMF>2.0.CO;2
  • 13. Jansen F., Schrum C., Backhaus J.O., 1999, A climatological data set of temperature and salinity for the Baltic Sea and the North Sea, Deutsche Hydrographische Zeitschrift, 51, 5, DOI: 10.1007/BF02933676
  • 14. Kay J.E., Deser C., Phillips A., Mai A., Hannay C., Strand G., Arblaster J., Bates S., Danabasoglu G., Edwards J., Holland H., Kushner P., Lamarque J.F., Lawrence D., Lindsay K., Middleton A., Munoz E., Neale R., Oleson K., Polvani L., Vertenste M., 2015, The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability, Bulletin of the American Meteorological Society, 8, 1333-1349, DOI: 10.1175/BAMS-D-13-00255.1
  • 15. Killworth P.D., Stainforth D., Webb D.J., Paterson S.M., 1991, The development of a free-surface Bryan-Cox-Semtner ocean model, Journal of Physical Oceanography, 21, 13331348, DOI: 10.1175/1520-0485(1991)021<1333:TDOAFS> 2.0.CO;2
  • 16. Kumar P., Bhattacharya B.K., Pal P.K., 2012, Impact of geostationary satellite INSAT-3A CCD generated vegetation fraction on regional model forecast, Agricultural and Forest Meteorology, 168, 82-92,
  • 17. Lipscomb W.H., Hunke E.C., Maslowski W., Jakacki J., 2007, Ridging, strength, and stability in high-resolution sea ice models, Journal of Geophysical Research, 112 (C3), 1-18, DOI: 10.1029/2005JC003355
  • 18. McDougall T.J., Jackett D.R., Wright D.G., Feistel R., 2003, Accurate and computationally efficient algorithms for potential temperature and density of seawater, Journal of Atmospheric and Oceanic Technology, 20, 730-741
  • 19. Meier M., Kauker F., 2003, Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity, Journal of Geophysical Research, 108 (C11), DOI: 10.1029/2003JC001799
  • 20. Omstedt A., Elken J., Lehmann A., Leppäranta M., Meier H.E.M., Myrberg K., Rutgersson A., 2014, Progress in physical oceanography of the Baltic Sea during the 20032014 period, Progress in Oceanography, 128, 139-171, DOI: 10.1016/j.pocean.2014.08.010
  • 21. Osinski R., 2007, Simulation of dynamic processes in the Baltic Sea based on integrated ocean-ice model, PhD. Thesis, Institute of Oceanology Polish Academy of Sciences
  • 22. Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea – revised edition, Baltic Sea Science Congress, November 25-29, Stockholm, Sweden, poster 147
  • 23. Semtner A.J., 1974, A general circulation model for the World Ocean, Department of Meteorology Technical Report, University of California Los Angeles, 99 pp.
  • 24. Skamarock W., Klemp J., Dudhia J., Gill D., Barker D.M., Duda M.G., Huang X.Y., Wang W., Powers J., 2008, A description of the advanced research WRF. Version 3, NCAR Technical Note, NCAR/TN–475+STR, available at http://www2. mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (data access 23.02.2017)
  • 25. Smith R., Gent P., 2004, Reference manual for the Parallel Ocean Program (POP), Los Alamos National Laboratory, New Mexico
  • 26. Stevens D.P., 1990, On open boundary conditions for three dimensional primitive equation ocean circulation models, Geophysical & Astrophysical Fluid Dynamics, 51, 103-133
  • 27. Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011, SatBałtyk – A Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 1: Assumptions, scope and operating range, Oceanologia, 53 (4), 897-924, DOI: 10.5697/oc.53-4.897
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aeb3f063-978b-4f0f-bfb6-2743e9606526
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.