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Abstract. In this paper we prove a mixed spectrum of Jacobi operators defined by λn =
s(n)(1+x(n)) and qn = −2s(n)(1+y(n)), where (s(n)) is a real unbounded sequence, (x(n))
and (y(n)) are some perturbations.
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1. INTRODUCTION

Let J = J(λn, qn) be a Jacobi operator acting in l2 = l2(N;C) and defined by

(Ju)(n) := λn−1u(n− 1) + qnu(n) + λnu(n+ 1), n ≥ 2, (1.1)
(Ju)(1) := q1u(1) + λ1u(2). (1.2)

We will always assume that the operator J acts on its maximal domain which is a set

Dmax(J) :=
{
u ∈ l2(N;C) : Ju ∈ l2(N;C)

}
.

In this paper we will describe spectral properties of a class of the Jacobi operators
in the critical case. We will show that operators of this class have mixed spectra. We
will do this using asymptotic behavior of generalized eigenvectors and the subordinacy
theory [8]. The generalized eigenvectors are the solutions of a second-order difference
equation

λn−1u(n− 1) + qnu(n) + λnu(n+ 1) = λu(n), λ ∈ R, n ≥ 2. (1.3)
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By the critical case (or double root case) we mean the situation when the characteristic
equation associated with system (1.3) has only one (double) solution. It is the case
when

lim
n→+∞

λn−1

λn
= 1, lim

n→+∞
1

λn
= 0, lim

n→+∞
qn
λn

= ±2. (1.4)

Rewrite system (1.3) in the matrix form:

~u(n+ 1;λ) = B(n;λ)~u(n;λ), λ ∈ R, n ≥ 2, (1.5)

where

~u(n;λ) :=

(
u(n− 1;λ)
u(n;λ)

)
, B(n;λ) :=

(
0 1

−λn−1

λn

λ−qn
λn

)
.

If (1.4) is valid, then the limit of the transfer matrices B(n;λ) has only one eigenvalue
∓1 (it is a Jordan box). Such operators have been studied e.g. in [3,7,9–11]. In all of
the papers spectral properties of the considered Jacobi operators were obtained in the
same way: the asymptotic behavior of the generalized eigenvectors + the subordinacy
theory.

The critical case corresponds to spectral phase transition phenomena, where the
spectral structure changes drastically. It is the exact moment where the spectrum
shifts from discrete to absolutely continuous one. We give more precise description of
this fact in Section 4, see also e.g. [6, 7, 10,11].

Let us briefly describe the subordinacy theory. Let µ(·) be a spectral measure
associated with the Jacobi operator J ,

(
(J − λ)−1e1, e1

)
=

∫

R

dµ(t)

t− λ ,

where e1 = (1, 0, . . .) is the first vector of the canonical base in l2(N;C). Let u(λ) =
(u(n;λ))+∞

n=1 be a solution of system (1.3). We say that u(λ) is subordinate if

lim
N→+∞

√∑N
n=1 |u(n;λ)|2

√∑N
n=1 |v(n;λ)|2

= 0, (1.6)

for any other solution v(λ) of (1.3) linearly independent with u(λ).
Define disjoint subsets Σac, Σs and Σ0 of R, such that R = Σac ∪ Σs ∪ Σ0, by

Σac :={λ∈R : no subordinate solution of (1.3) exists} ,
Σs := {λ∈R : a subordinate solution of (1.3)

exists and satisfies initial conditions q1u(1) + λ1u(2) = λu(1)},
Σ0 := {λ∈R : a subordinate solution of (1.3)

exists but does not satisfy initial conditions q1u(1) + λ1u(2)=λu(1)}.
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Then µ(Σ0) = 0, and the decomposition of µ into its respective absolutely continuous
and singular components is given by

µac = µ|Σac
, µs = µ|Σs

.

Moreover, the sets Σ0, Σac and Σs are optimal with respect to Lebesgue measure, in
the sense that

(i) if Σ0 ⊂ Σ′0 and µ(Σ′0) = 0, then Lebesgue measure of Σ′0 \ Σ0 is zero,
(ii) if Σ′ac ⊂ Σac and µac = µ|Σ′ac

, then Lebesgue measure of Σac \ Σ′ac is zero,
(iii) Lebesgue measure of Σs is zero.

The order of the paper is the following. In Section 2 we present our main result -
Theorem 2.5, which we prove in Section 3. Section 4 contains short spectral analysis
of the non-critical situation.

2. MAIN RESULTS

Let J = J(λn, qn) be a Jacobi operator defined by (1.1) and (1.2) with

λn = s(n)(1 + x(n)), qn = −2s(n)(1 + y(n)), n ≥ 1, (2.1)

where the sequences (s(n))+∞
n=1, (x(n))+∞

n=1 and (y(n))+∞
n=1 are such that, for n ∈ N:

(i) λn > 0, qn ∈ R, (2.2)

(ii) lim
n→+∞

s(n) = +∞, s(n) =
n∑

k=1

r(k),

(
r(n)

s3/2(n)

)
∈ l1(N;R), (2.3)

(iii) lim
n→+∞

r(n) = 0, (r(n)) ∈ D1, r(n) > 0, (2.4)

(iv)
(√

s(n)x(n)
)
∈ l1(N;R),

(√
s(n)y(n)

)
∈ l1(N;R). (2.5)

Remark 2.1. We say that a sequence (a(n))+∞
n=1 belongs to D1 class iff

+∞∑

n=1

|a(n+ 1)− a(n)| < +∞.

The above Jacobi operator induces second order difference equation (1.3) consid-
ered in [12]. We will use the asymptotic formulas of the generalized eigenvectors found
in [12] to prove mixed nature of the spectrum of the Jacobi operator J(λn, qn). In
[12, Section 2] the reader will find some properties and analysis of regularity of the
sequences (λn) and (qn). For example, sequences such like (nα), for α ∈ (0, 1), and
(lnn) satisfy the above assumptions. The case s(n) = nα was studied in [7] and also
in [10]. On the other hand the case s(n) = lnn has never been studied. Even more,
the method from [10] can not be applied. We wanted to find the largest class of Jacobi
operators in the double root case which contain the operators inducted by (nα) and
(lnn). In [12] we described the asymptotic behavior of the generalized eigenvectors of
such operators. Here we are interested in their spectral properties.
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For the reader’s convenience we quote the results of [12] below.

Theorem 2.2. Let (λn) and (qn) be two real sequences defined by (2.1)-(2.5). If λ > 0,
then recurrence system (1.3) has two linearly independent solutions (u−(n;λ))+∞

n=1 and
(u+(n;λ))+∞

n=1 with the following asymptotic behavior:

u±(n;λ) ∼
(√

s(n)e−ϕ(n)
)1/2

exp

(
±
n−1∑

k=1

φ(k;λ)

)
, (2.6)

where

ϕ(n) =
n∑

k=1

r(k)

s(k − 1)
,

φ(k;λ) =

√
λ

s(k)
+

r(k)

2
√
λs(k)

− 1

24

(
λ

s(k)

) 3
2

+O
(
s−2(k)

)
+O

(
r2(k)

s1/2(k)

)
.

(2.7)

All the O(·) terms in this formula are real.

Theorem 2.3. Let (λn) and (qn) be two real sequences defined by (2.1)–(2.5). If λ < 0,
then recurrence system (1.3) has two linearly independent solutions (u−(n;λ))+∞

n=1 and
(u+(n;λ))+∞

n=1 with the following asymptotic behavior:

u±(n;λ) ∼
(√

s(n)e−ϕ(n)
)1/2

exp

(
±i

n−1∑

k=1

φ(k;λ)

)
, (2.8)

where ϕ(n) is given by (2.7) and

φ(k;λ) =

√
−λ
s(k)

− r(k)

2
√
−λs(k)

+
1

24

( −λ
s(k)

) 3
2

+O
(
s−5/2(k)

)
+O

(
r2(k)s−1/2(k)

)

+ iO
(
s−2(k)

)
+ iO

(
r2(k)s−1(k)

)
.

(2.9)

All the O(·) terms in this formula are real.

Remark 2.4. We wrote the asymptotic formulas in the exponential form instead of
the product form, as it is in [12], because it is suitable for us. This notation simplifies
some calculations and allows us to use the Euler summation formula.

Using the above theorems we will prove the following.

Theorem 2.5. Assume that J = J(λn, qn) is a Jacobi operator defined by (1.1),
(1.2). If (λn) and (qn) satisfy (2.1)–(2.5), then J is selfadjoint. Moreover:
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1. σ(J) ∩ (0,+∞) ⊂ σp(J),
2. if (s−2(n)) and (r2(n)s−1(n)) are in l1(N,R), then (−∞, 0) ⊂ σac(J) and J is

absolutely continuous on (−∞, 0).

We see that in the double root case we have a pure point spectrum on the positive
halfline and an absolutely continuous spectrum on the negative halfline. This result
corresponds to [7, Theorem 5.1], but in our paper we deal with a much larger class of
Jacobi operators. For example, the first part of the theorem is true for all the Jacobi
operators J = J(λn, qn) with s(n) = nα (α ∈ (0, 1)) or s(n) = lnn. Unfortunately
the second part of the theorem is not true for J with s(n) = lnn or s(n) = nα where
α ∈

(
0, 1

2

)
. It is because (s−2(n)) is not in l1.

Generally, if (s−2(n)) or (r2(n)s−1(n)) are not in l1, then

exp

[
±i

n−1∑

k=1

(
iO
(

1

s2(n)

)
+ iO

(
r2(n)

s(n)

))]
(2.10)

from (2.8) goes to infinity or to zero, depending on the sign. In this situation the
solutions u±(λ) from Theorem 2.3 oscillate and one of them might be subordinate.

In non-critical situation it is easy to prove absolute continuity via asymptotic anal-
ysis and the subordinacy theory. In the critical situation we have a new phenomenon.
The asymptotic formulas of the linearly independent solutions of system (1.5) contain
vectors which are equal. This obstacle forced us to find a new (not trivial) way to
estimate the quotient in (1.6). Precise description of this problem and its solution (in
our setting) the reader will find in the next section. In [9] M. Moszyński investigates
this problem in general situation.

3. PROOF OF THEOREM 2.5

First let us prove that the operator J is selfadjoint. It is obvious that from assumptions
(2.4) and (2.5) one can obtain boundness of the sequences (r(n)) and (x(n)). We have
that there are constants C1 > 0 and C2 > 0 such that for all n ∈ N,

λn = s(n)(1 + x(n)) ≤ (1 + C2)
n∑

k=1

r(k) ≤ (1 + C2)
n∑

k=1

C1 = C1(1 + C2)n.

The above inequality guarantees that the Carleman’s condition is fulfilled, so J must
be selfadjoint. For details see [1, Chapter VII, Theorem 1.3].

For the proof of the first part of Theorem 2.5 let us fix λ > 0. In this situation
Theorem 2.2 implies existence of a solution u−(λ) = (u(n;λ))+∞

n=1 of equation (1.3)
with the asymptotics given by (2.6). From (2.3) and (2.4) we see that the main
(dominant) part in asymptotic formula (2.6) is

n∑

k=1

√
λ

s(k)
.
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Because, as we noticed before, s(n) ≤ C1n for every n ∈ N the above sum goes to
infinity for n→ +∞, so

exp

(
−

n∑

k=1

√
λ

s(k)

)
∈ l2 (N;R) .

The above observation and Lemma 3.1 below prove that there exist constants
C1, C2 > 0 such that for large enough n

|u−(n;λ)| ≤ C1

4
√
n

exp
(
−C2

√
n
)

which implies u−(λ) ∈ l2. The subordinacy theory [8, Theorem 3] finishes the proof
of the first claim.

Now, let us turn to the proof of the second part of the theorem. Let λ be a fixed
negative real number. According to Theorem 2.3, recurrence system (1.3) with λ < 0
has a base of solutions {u+(λ), u−(λ)} with the asymptotic behavior given by (2.8).
It means that system (1.5) has a base of solutions {~u+(λ), ~u−(λ)} with the following
asymptotic behavior:

~u±(n;λ) ∼ ψ±(n;λ)~e±,

where ψ+(n;λ) = ψ−(n;λ) and ~e± ∈ C2. If the vectors ~e+ and ~e− were linearly
independent (which we normally have in the non-critical situation), then the proof of
the second part of the theorem would be quite simple. Unfortunately, we are in the
critical situation and the vectors ~e± are linearly dependent, even more they are equal!
To verify this see [12, Section 5].

This kind of situation was studied by M.Moszyński in [9]. Unfortunately particular
results of his paper do not cover Jacobi operators considered in this paper. Of course
we could use general result [9, Theorem 0.3] but then we would end up with the same
kind of estimations which we present below.

We want to show that for (u(n;λ)) and (v(n;λ)), two linearly independent solu-
tions of (1.3) with λ < 0, there exists a constant ρ > 0 such that

∑N
n=n0

|u(n;λ)|2
∑N
n=n0

|v(n;λ)|2
≥ ρ > 0, (3.1)

for all sufficiently large N .
Let λ < 0 be fixed. From Theorem 2.3 we know that for such λ there are two

linearly independent solutions u±(λ) = (u±(n;λ))+∞
n=1 with the following asymptotics:

u±(n;λ) ∼ f(n) exp (±iΦ(n;λ)) ,

where

f(n) =
(√

s(n)e−ϕ(n)
)1/2

, Φ(n;λ) =
n−1∑

k=1

√
−λ
s(k)

(1 + γ(k;λ)), (3.2)
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ϕ(n) is given by (2.7) and γ(n;λ) is a sequence of the order O(r(n)) + O(s−1(n)).
To be precise, the sequences u±(λ) in here differ from the ones in Theorem 2.3 by
a constant factor. Because (s−2(n)) and (r2(n)s−1(n)) are in l1(N,R), so the terms
(2.10) are convergent and can be omitted in the asymptotics of u±(n;λ) (see formula
(2.8)). In this situation, the sequences in (3.2) are real! For the simplicity we leave
the same notion.

Let u(λ) = (u(n;λ))+∞
n=1 and v(λ) = (v(n;λ))+∞

n=1 be linearly independent solutions
of (1.3). Then

u(n;λ) = c+u+(n;λ) + c−u−(n;λ), n ∈ N,

v(n;λ) = d+u+(n;λ) + d−u−(n;λ), n ∈ N,

with some complex constants c± and d±. If we assume that c± = r±eiθ± and d± =
s±eiζ± , then

|u(n;λ)|2 =
∣∣∣
(
r+f(n)ei(θ++Φ(n;λ))(1 + o(1)) + r−f(n)ei(θ−−Φ(n;λ))(1 + o(1))

)∣∣∣
2

,

|v(n;λ)|2 =
∣∣∣
(
s+f(n)ei(ζ++Φ(n;λ))(1 + o(1)) + s−f(n)ei(ζ−−Φ(n;λ))(1 + o(1))

)∣∣∣
2

.

If in the above equalities we rewrite all the complex numbers in the polar form, then
we have

|u(n;λ)|2 = |f(n)|2
(
r2
+ + r2

− + 2r+r− cos (θ + 2Φ(n;λ)) + εu(n;λ)
)
, (3.3)

|v(n;λ)|2 = |f(n)|2
(
s2

+ + s2
− + 2s+s− cos (ζ + 2Φ(n;λ)) + εv(n;λ)

)
, (3.4)

where θ := θ+ − θ−, ζ := ζ+ − ζ− and (εσ(n;λ))+∞
n=1 (for σ = u, v) are some real

sequences decaying to zero in infinity, such that the terms in the brackets in (3.3) and
(3.4) are not negative. From the above we have that for any ε > 0 there is n0 ∈ N
such that for all n ≥ n0

(
(r+ − r−)2 − ε

)
|f(n)|2 ≤ |u(n;λ)|2, (3.5)

(
(s+ + s−)2 − ε

)
|f(n)|2 ≥ |v(n;λ)|2. (3.6)

If r+ 6= r− and ε is small enough, e.g. ε ≤ min
{

(r+−r−)2

2 , (s++s−)2

2

}
, then

∑N
n=n0

|u(n;λ)|2
∑N
n=n0

|v(n;λ)|2
≥
(
(r+ − r−)2 − ε

)∑N
n=n0

|f(n)|2

((s+ + s−)2 + ε)
∑N
n=n0

|f(n)|2
≥ 1

3

(r+ − r−)2

(s+ + s−)2
> 0

and (3.1) is true. If r+ = r−, then we have negative number in the left hand side of
(3.5). To deal with this situation we need more delicate approach.

Without lost of generality we may assume that r+ = r− = 1. Then (3.3) reads as

|u(n;λ)|2 = |f(n)|2 (2 + 2 cos (θ + 2Φ(n;λ)) + εu(n;λ)) . (3.7)



360 Wojciech Motyka

Because θ and Φ(n;λ) are real, so

|u(n;λ)|2 ≤ C|f(n)|2, n ≥ n0,

with some constant C > 0 (independent on n and θ). This estimation is also true for
v(λ) But it may happen that, for some n, cos (θ + 2Φ(n;λ)) will be equal (or almost
equal) to −1, so we cannot estimate (3.7) from below by C ′|f(n)|2 with C ′ > 0. This
situation occurs when, for some k ∈ Z,

∣∣∣∣Φ(n;λ)− π − θ
2
− kπ

∣∣∣∣ < ε,

where ε is a small real number.
Let us fix ε > 0 and define, for all k ∈ Z, numbers

ρk =
π − θ

2
+ kπ,

and sets

Ak = {n ∈ N : ρk − ε ≤ Φ(n;λ) < ρk + ε} ,
Bk = {n ∈ N : ρk + ε ≤ Φ(n;λ) < ρk+1 − ε} .

If a natural number n is in
⋃
k∈ZAk, then (3.7) is very small and u(n;λ) is almost

zero. On the other hand, u(n;λ) is separated from zero for every n ∈ ⋃k∈ZBk.
Because Ak and Bk are disjoint sets we can decompose the set of all natural

numbers in the following way:

N =
⋃

k∈Z
(Ak ∪Bk) .

Take n0 ∈ N such that

0 <

√
−λ
s(n)

(1 + γ(n;λ)) < ε, n ≥ n0, (3.8)

and define

k0 := min {k ∈ Z : ∃n > n0 : ρk − ε ≤ Φ(n;λ) < ρk + ε} . (3.9)

Simply, k0 is the number of the first Ak set which is not empty.
Let n ∈ Ak0 , then we may have Φ(n;λ) ≤ ρk0 or ρk0 < Φ(n;λ). In the former case,

using (3.2) and (3.8),

ρk0 − ε ≤ Φ(n;λ) < Φ(n+ 1;λ) = Φ(n;λ) +

√
−λ

s(n+ 1)
(1 + γ(n+ 1;λ)) < ρk0 + ε,



Spectra of some selfadjoint Jacobi operators in the double root case 361

which means that n+ 1 ∈ Ak0 also. In the latter case, again using (3.2) and (3.8),

ρk0 + ε > Φ(n;λ) > Φ(n− 1;λ) = Φ(n;λ)−
√
−λ
s(n)

(1 + γ(n;λ)) ≥ ρk0 − ε,

which implies that n− 1 ∈ Ak0 . In either situation, #Ak0 > 1.
Assumptions (2.3) and (2.4) imply that for n large enough s(n) < n which proves

that Φ(n;λ) diverges to infinity. Even more, by (3.2) and (3.8),

Φ(n+ 1;λ)− Φ(n;λ) < ε, n ≥ n0.

So, if #Ak0 > 1, then it must be

#Ak > 1, #Bk > 1, k ≥ k0, (3.10)

because the sets Ak and Bk are getting bigger if k → +∞.
Let K > k0 be a natural number and set

Ak = {ak, . . . , ak}, Bk = {bk, . . . , bk}, k = k0, . . . ,K,

n1 := ak0 , N := bK .

With this notations we have

n1 = ak0 < . . . < bk−1 < ak < ak < bk < bk < . . . < bK = N, (3.11)

{n1, . . . , N} = Ak0 ∪Bk0 ∪ . . . ∪AK ∪BK .

The idea is to estimate (3.7) separately for n ∈ Ak and n ∈ Bk (k = k0, . . . ,K).
Let k ∈ {k0, . . . ,K}. From the definition of Ak we have

Φ(ak;λ) < ρk + ε, Φ(ak;λ) ≥ ρk − ε,

which implies

2ε > Φ(ak;λ)− Φ(ak;λ) =

ak−1∑

l=ak

√
−λ
s(l)

(1 + γ(l;λ))

≥ C1

ak−1∑

l=ak

√
−λ
s(l)
≥ C1

√
−λ

s(ak − 1)
(#Ak − 1). (3.12)

Here C1 is a positive constant.
Now, for k ∈ {k0, . . . ,K}, from the definition of Bk, we have

Φ(ak − 1;λ) < ρk − ε, Φ(ak + 1;λ) ≥ ρk + ε,
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and

2ε ≤ Φ(ak + 1;λ)− Φ(ak − 1;λ) =

ak+1∑

l=ak

√
−λ
s(l)

(1 + γ(l;λ))

≤ C2

ak+1∑

l=ak

√
−λ
s(l)
≤ C2

√
−λ
s(ak)

(#Ak + 1). (3.13)

The constant C2 is positive.
If we combine together (3.12), (3.13), (3.11) and recall that s(n+1) > s(n) (n ∈ N)

we will have the following estimation of sizes of the sets Ak:

2ε

C2

√
−λ
√
s(ak)− 1 ≤ #Ak ≤

2ε

C1

√
−λ
√
s(ak − 1) + 1, k = k0, . . . ,K.

Because s(n) increases to infinity and bk = ak + 1, bk−1 = ak − 1, we can rewrite the
above estimation as:

CA(ε;λ)

√
s(bk−1) ≤ #Ak ≤ CA(ε;λ)

√
s(bk), k = k0, . . . ,K. (3.14)

The constants CA(ε;λ) and CA(ε;λ) are strictly positive for all ε > 0 and λ < 0, and
they go to zero if ε→ 0.

In the same simple way we can estimate sizes of the sets Bk. We have, that there
are some positive constants C3 and C4 such that

π − 2ε

C4

√
−λ
√
s(bk)− 1 ≤ #Bk ≤

π − 2ε

C3

√
−λ

√
s(bk − 1) + 1, k = k0, . . . ,K.

Again, because s(n) goes to infinity, we have

CB(ε;λ)

√
s(bk−1) ≤ #Bk ≤ CB(ε;λ)

√
s(bk), k = k0, . . . ,K. (3.15)

Here, CB(ε;λ) and CB(ε;λ) are also strictly positive for all ε > 0 and λ < 0, but
they tend to some positive constants if ε→ 0.

In the next step of this proof we will estimate the sequence (f(n)), given by (3.2),
which appears in the asymptotic formulas of the solutions of generalized eigenequa-
tion (1.3).

Lemma 3.1. Let

f(n) =

[
√
s(n) exp

(
−

n∑

k=1

r(k)

s(k − 1)

)]1/2

, n ∈ N.

There are some positive constants Cf and Cf such that, for sufficiently large n,

Cf√
s(n)

≤ |f(n)|2 ≤ Cf√
s(n)

. (3.16)
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Proof. Define a function r̃ : [1,+∞)→ R,

r̃(x) =

{
r(n), x = n ∈ N,
r(n+ 1)(x− n) + r(n)(n+ 1− x), x ∈ (n, n+ 1).

(3.17)

Remark 3.2. Here we could use any other continuous function r̃ monotonic on every
interval [n, n+ 1] and such that r̃(n) = r(n) for all n ∈ N.

From Euler summation formula we have
n∑

k=1

r(k) =

n∫

1

r̃(x) dx+ dr(n) + r(n), n > 1,

where

dr(n) =

n−1∑

k=1

k+1∫

k

(r(k)− r̃(x)) dx, n > 1.

We assumed that (r(n)) ∈ D1. It implies

|dr(n)| ≤
n−1∑

k=1

k+1∫

k

|r(k)− r̃(x)| dx ≤
n−1∑

k=1

k+1∫

k

|r(k + 1)− r(k)| dx

=

n−1∑

k=1

|r(k + 1)− r(k)| <
+∞∑

k=1

|r(k + 1)− r(k)| < +∞.

From the above inequality we have

s(n) =

n∑

k=1

r(k) =

n∫

1

r̃(t) dt+ Cr(n), n > 1, (3.18)

where (Cr(n)) is a real bounded sequence.
Let us define a function s̃ : [1,+∞)→ R,

s̃(x) :=

x∫

1

r̃(t) dt+ 1, x ≥ 1. (3.19)

We added the 1 in order to s̃(1) 6= 0 but still s̃′(x) = r̃(x) for all x ≥ 1. The definition
of s̃ and (3.18) imply

s(n) = s̃(n) + Cr(n)− 1, n > 1. (3.20)

Now we can define continuous version of (f(n)). Let f̃ : [1,+∞)→ R be defined as

f̃(x) :=


√s̃(x) exp


−

x∫

1

r̃(t)

s̃(t)
dt






1/2

, x ≥ 1.
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Simple calculus shows that, for x ≥ 1,

f̃(x) =
[√

s̃(x) exp (− ln s̃(x) + ln s̃(1))
]1/2

=

[√
s̃(x)

s̃(1)

s̃(x)

]1/2

=

[
s̃(1)√
s̃(x)

]1/2

.

This observation implies, for n sufficiently large,
∣∣∣f̃(n)

∣∣∣
2

=
s̃(1)√
s̃(n)

=
s̃(1)√
s(n)

(
1 +O

(
s−1(n)

))
. (3.21)

On the other hand

∣∣∣f̃(n)
∣∣∣
2

=
√
s̃(n) exp


−

n∫

1

r̃(t)

s̃(t)
dt


, n > 1. (3.22)

Using Euler summation formula once again we can rewrite the integral in the above
formula as

n∫

1

r̃(x)

s̃(x)
dx =

n∑

k=1

r̃(k)

s̃(k)
− dr/s(n)− r̃(n)

s̃(n)
, n > 1,

where

dr/s(n) =
n−1∑

k=1

k+1∫

k

(
r̃(k)

s̃(k)
− r̃(x)

s̃(x)

)
dx, n > 1.

We can estimate the above integral in the following way:
∣∣∣∣∣∣

k+1∫

k

(
r̃(k)

s̃(k)
− r̃(x)

s̃(x)

)
dx

∣∣∣∣∣∣
≤

k+1∫

k

∣∣∣∣
r̃(k)

s̃(k)
− r̃(x)

s̃(x)

∣∣∣∣ dx

=

k+1∫

k

∣∣∣∣
s̃(x)r̃(k)− s̃(x)r̃(x) + s̃(x)r̃(x)− s̃(k)r̃(x)

s̃(k)s̃(x)

∣∣∣∣ dx

≤ max
x∈[k,k+1]

( |r̃(k)− r̃(x)|
s̃(k)

+
r̃(x) |s̃(x)− s̃(k)|

s̃2(k)

)
.

From (3.17), (3.19) and (3.20) we have, for k large enough, that the right-hand side
of the above inequality is

O
(

(∆r)(k)

s(k)

)
+O

(
r2(k)

s2(k)

)
,

and is summable, according to assumptions (2.3) and (2.4). So, (dr/s(n)) is convergent
and

n∫

1

r̃(x)

s̃(x)
dx =

n∑

k=1

r̃(k)

s̃(k)
+ Cr/s(n), n > 1,
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where Cr/s(n) tends to a real constant Cr/s, if n→ +∞. If we recall that r̃(k) = r(k),
for all k ∈ N, and use (3.20), then for n sufficiently large

n∫

1

r̃(x)

s̃(x)
dx =

n∑

k=1

r(k)

s(k)− Cr(k) + 1
+ Cr/s(n)

=
n∑

k=1

[
r(k)

s(k)
+O

(
r(k)

s2(k)

)]
+ Cr/s(n)

=

n∑

k=1

[
r(k)

s(k − 1)
+O

(
r(k)

s2(k)

)]
+ Cr/s(n)

=
n∑

k=1

r(k)

s(k − 1)
+ C(n),

where (C(n)) is a convergent real sequence. In the last two equalities we used assump-
tion (2.3). If we put the above equality into (3.22), then for n large enough

∣∣∣f̃(n)
∣∣∣
2

=
√
s̃(n) exp

(
−

n∑

k=1

r(k)

s(k − 1)
− C(n)

)

=
√
s(n)− Cr(n) + 1 exp

(
−

n∑

k=1

r(k)

s(k − 1)
− C(n)

)

= ε(n)
√
s(n) exp

(
−

n∑

k=1

r(k)

s(k − 1)

)
= ε(n)|f(n)|2.

Here (ε(n)) is real and converges to some positive constant. This observation and
(3.21) finish the proof of Lemma 3.1.

Remark 3.3. Lemma 3.1 gives us something more. Under conditions of Theorem 2.5
we can prove that f(n) ∼ C(s(n))−1/4. This simplifies the form of the asymptotics
(2.6) and (2.8), making them look more “WKB-like”. In order to prove Theorem 2.5
we only needed to estimate |f(n)|2, that is why we formulated Lemma 3.1 this way.

In the above calculations we used the phrase “for sufficiently large n” several times.
In every case it means that there exists a natural number n′ such that for n ≥ n′

some expression is true. If we take n′′ as the largest n′, then all the above estimations
are true for n ≥ n′′. In (3.8) we fixed n0 and later we used it to define k0 in (3.9), and
n1 in (3.11). Without lost of generality we can always assume that n0 = n′′. In the
remaining part of this paper whenever some expression is true “for n large enough”
we always assume that n0, and by this, k0 and n1 are large enough.

We have estimated the lengths of the sets Ak and Bk, and the values of f(n). Now
we can estimate |u(n;λ)|2 and |v(n;λ)|2 separately on Ak and Bk. Let us start with
the latter.
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From (3.6) we know that |v(n;λ)|2 is bounded from above by κ|f(n)|2, with some
positive constant κ. If n ∈ Ak (k = k0, . . . ,K), then (3.16) and (3.11) imply

|v(n;λ)|2 ≤ Cfκ√
s(bk−1)

, n ∈ Ak, k = k0, . . . ,K. (3.23)

The above inequality and (3.14) give us the following estimation:

∑

n∈Ak

|v(n;λ)|2 ≤ C1(ε)

√
s(bk)

s(bk−1)
, k = k0, . . . ,K. (3.24)

Here C1(ε) > 0 and goes to zero, if ε→ 0.
Similarly for n ∈ Bk (k = k0, . . . ,K), (3.16) and (3.11) imply

|v(n;λ)|2 ≤ CfC√
s(bk−1)

, n ∈ Bk, k = k0, . . . ,K. (3.25)

Now, by this estimation and (3.15) we have:

∑

n∈Bk

|v(n;λ)|2 ≤ C2(ε)

√
s(bk)

s(bk−1)
, k = k0, . . . ,K. (3.26)

where C2(ε) > 0 tends to some strictly positive constant, if ε→ 0.
If we notice that

N∑

n=n1

|v(n;λ)|2 =

K∑

n=k0

(∑

n∈Ak

|v(n;λ)|2 +
∑

n∈Bk

|v(n;λ)|2
)
, (3.27)

and use (3.24) and (3.26), we will get the following:

N∑

n=n1

|v(n;λ)|2 ≤ CU (ε)

K∑

k=k0

√
s(bk)

s(bk−1)
. (3.28)

where CU (ε)→ CU > 0, if ε→ 0.
Now let us turn to |u(n;λ)|2. In order to estimate

∑N
n1
|u(n;λ)|2 from below we

only need to consider u(n;λ) for n ∈ Bk. If n ∈ Ak, then |u(n;λ)| is very small and
we can omit it. From (3.27), with u instead of v, we have:

N∑

n=n1

|u(n;λ)|2 ≥
K∑

k=k0

∑

n∈Bk

|u(n;λ)|2. (3.29)

Let n ∈ Bk (k = k0, . . . ,K). From the definition of the sets Bk, there exists a
positive constant κ̃ = κ̃(ε) such that

2 + 2 cos (θ + 2Φ(n;λ)) + εu(n;λ) ≥ κ̃(ε), n ≥ n0,
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which implies (see also (3.7), (3.11) and (3.16)):

|u(n;λ)|2 ≥
Cf κ̃(ε)√
s(bk)

, n ∈ Bk, k = k0, . . . ,K. (3.30)

Here we remind that ε is fixed.
The estimations (3.15), (3.29) and (3.30) imply:

N∑

n=n1

|u(n;λ)|2 ≥ CL(ε)
K∑

k=k0

√
s(bk−1)

s(bk)
, (3.31)

where CL(ε) is some positive constant which goes to zero, if ε→ 0.

The last thing which requires a proof is the fact that
√

s(bk−1)

s(bk)
in (3.31) is not too

small,
√
s(bk−1)

s(bk)
=

(
s(bk) + s(bk−1)− s(bk)

s(bk)

)1/2

=

(
1− s(bk)− s(bk−1)

s(bk)

)1/2

.

Define

φ(k) :=
s(bk)− s(bk−1)

s(bk)
, k = k0, . . . ,K.

From assumptions (2.2) and (2.3), and (3.11) we have that φ(k) > 0 and

φ(k) =
r(bk−1 + 1) + . . .+ r(bk)

s(bk)
≤ (#Ak + #Bk)

s(bk)
max

t∈Ak∪Bk

r(t).

This inequality, (3.14), (3.15) and (2.4) shows that

φ(k) ≤ C(ε)√
s(bk)

max
t∈Ak∪Bk

r(t), k = k0, . . . ,K.

The right hand side of this inequality goes to zero, if k → +∞. So we can always
assume there is a constant C > 0 such that, for k = k0, . . . ,K, the following is true:

√
s(bk−1)

s(bk)
= (1− φ(k))

1/2
= 1− 1

2
φ(k) +O

(
φ2(k)

)
≥ C > 0. (3.32)

In order to end the proof we need to use (3.28), (3.31) and (3.32):

∑N
n=n1

|u(n;λ)|2
∑N
n=n1

|v(n;λ)|2
≥
CL(ε)

∑K
k=k0

√
s(bk−1)

s(bk)

CU (ε)
∑K
k=k0

√
s(bk)

s(bk−1)

≥ CL(ε)C(K − k0)

CU (ε) 1
C (K − k0)

≥ ρ(ε) > 0.

In this formula ρ(ε) is a constant because ε was fixed, but N = bK goes to infinity,
because K was chosen to be an arbitrarily large natural number. With this sentence
we finish the proof.

�
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4. NON-CRITICAL SITUATION

In this section we consider a Jacobi operator Jδ = Jδ(λn, qn) with

λn := s(n)(1 + x(n)) qn = δs(n)(1 + y(n)), n ≥ 1, (4.1)

where the sequences (s(n))+∞
n=1, (x(n))+∞

n=1 and (y(n))+∞
n=1 are defined by (2.2)-(2.5),

and δ is a real parameter. We will describe σ(Jδ) for δ 6= ±2. This result will justify
the name “critical situation” for δ = ±2.

Theorem 4.1. Let Jδ = Jδ(λn, qn) be a Jacobi operator defined by (1.1), (1.2). If
(λn) and (qn) satisfy (4.1) and (2.2)-(2.5), then Jδ is selfadjoint and

1. if |δ| < 2, then σac(Jδ) = R and Jδ is absolutely continuous on the real line,
2. if |δ| > 2, then σ(Jδ) = σd(Jδ).

Proof. In order to prove selfadjointness of Jδ one need to repeat the reasoning from
the proof of Theorem 2.5.

Let us first deal with the case |δ| < 2. Simple calculations show that, for n large
enough,

λn−1

λn
= 1− r(n)

s(n− 1)
+O

(
r2(n)

s2(n)

)
+O(x(n)),

1

λn
=

1

s(n)
+O(x(n)),

qn
λn

= δ +O(x(n)) +O(y(n)).

So the forward differences of the above sequences must be equal respectively:

λn
λn+1

− λn−1

λn
=
r(n)− r(n+ 1)

s(n)s(n+ 1)
+O

(
r2(n)

s2(n)

)
+O(x(n)),

1

λn+1
− 1

λn
=
s(n)− s(n+ 1)

s(n)s(n+ 1)
+O(x(n)) =

−r(n+ 1)

s(n)s(n+ 1)
+O(x(n))

=
−r(n+ 1)

s2(n+ 1)
+O

(
r2(n)

s3(n)

)
+O(x(n)),

qn+1

λn+1
− qn
λn

= O(x(n)) +O(y(n)).

The above equalities and assumpions (2.2)-(2.5) prove that the sequences (λn−1

λn
), ( 1

λn
)

and ( qnλn
) are of bounded variation. It is also easy to check that

lim
n→+∞

λn−1

λn
= 1, lim

n→+∞
1

λn
= 0, lim

n→+∞
qn
λn

= δ.

Now Theorem 1.6 of [4] finishes the proof of the first part of the theorem.
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In order to prove the second claim we will use Theorem 4.1 of [5] which says that
if

lim
n→+∞

|qn| = +∞, lim inf
n→+∞

q2
n

λ2
n + λ2

n−1

> 2, (4.2)

then a Jacobi operator J = J(λn, qn) has only discrete spectrum. In our situation

q2
n

λ2
n + λ2

n−1

=
δ2s2(n)(1 + y(n))2

2s2(n)

(
(1 + x(n))2 +

(
1− r(n)

s(n)

)2

(1 + x(n− 1))2

)

=
δ2

2

(
1 +O

(
r(n)

s(n)

)
+O (x(n)) +O (y(n))

)
−→ δ2

2
.

The last statement proves (4.2), if |δ| > 2.

Now we see that δ = −2 and δ = 2 are border lines between absolute continuity
and discreteness of the operator Jδ. In some sense it explains why the operators J±2

have mixed spectrum, as we stated in Theorem 2.5.
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