PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-fragile event-triggered control of positive switched systems with random nonlinearities and controller perturbations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the non-fragile event-triggered control of positive switched systems with random nonlinearities and controller perturbations. The random nonlinearities and controller perturbations are assumed to obey Bernoulli and Binomial sequence, respectively. A class of linear event-triggering conditions is introduced. A switched linear co-positive Lyapunov function is constructed for the systems. For the same probability with respect to nonlinearities and controller perturbations in each subsystem, a non-fragile controller of positive switched systems is designed in terms of linear programming. Then, the different probability case is considered and the corresponding non-fragile event-triggered control is explored. Finally, the effectiveness of theoretical findings is verified via two examples.
Rocznik
Strony
art. no. e138566
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
Bibliografia
  • [1] L. Fainshil, M. Margaliot, and P. Chigansky, “On the stability of positive linear switched systems under arbitrary switching laws,” IEEE Trans. Autom. Contr., vol. 54, no. 4, pp. 897–899, 2009.
  • [2] T. Kaczorek, “Simple sufficient conditions for asymptotic stability of positive linear systems for any switchings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 343–347, 2013.
  • [3] J. Zhang, Z. Han, and F. Zhu, “L1-gain analysis and control synthesis of positive switched systems,” Int. J. Syst. Sci., vol. 46, no. 12, pp. 2111–2121, 2015.
  • [4] T. Kaczorek, “Global stability of positive standard and fractional nonlinear feedback systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 285–288, 2020.
  • [5] H. Yang and Y. Hu, “Stability and stabilization of positive linear dynamical systems: new equivalent conditions and computations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 307‒315, 2020.
  • [6] L. Farina and S. Rinaldi, Positive linear systems: theory and applications. John Wiley and Sons, 2011.
  • [7] T. Kaczorek, Positive 1D and 2D systems. Springer Science and Business Media, 2012.
  • [8] J. Lam et al., Positive Systems. Springer, 2019.
  • [9] E. Hernandez-Vargas et al., “Discrete-time control for switched positive systems with application to mitigating viral escape,” Int. J. Robust Nonlinear Contr., vol. 21, no. 10, pp. 1093–1111, 2011.
  • [10] L. Gurvits, R. Shorten, and O. Mason, “On the stability of switched positive linear systems,” IEEE Trans. Autom. Contr., vol. 52, no. 6, pp. 1099–1103, 2007.
  • [11] E. Fornasini and M. Valcher, “Stability and stabilizability criteria for discrete-time positive switched systems,” IEEE Trans. Autom. Contr., vol. 57, no. 5, pp. 1208‒1221, 2011.
  • [12] J. Zhang et al., “Stability and stabilization of positive switched systems with mode-dependent average dwell time,” Nonlinear Anal.-Hybrid Syst., vol. 9, pp. 42–55, 2013.
  • [13] J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 3, pp. 547–555, 2013.
  • [14] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems,” IEEE Trans. Autom. Contr., vol. 52, no. 7, pp. 1346–1349, 2007.
  • [15] F. Blanchini, P. Colaneri, and M. Valcher, “Co-positive Lyapunov functions for the stabilization of positive switched systems,” IEEE Trans. Autom. Contr., vol. 57, no. 12, pp. 3038–3050, 2012.
  • [16] X. Liu, “Stability analysis of switched positive systems: A switched linear copositive Lyapunov function method,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 56, no. 5, pp. 414– 418, 2009.
  • [17] M. Li et al., “Nonfragile reliable control for positive switched systems with actuator faults and saturation,” Optim. Contr. Appl. Met., vol. 40, no. 4, pp. 676–690, 2019.
  • [18] J. Zhang, X. Zhao, and R. Zhang, “An improved approach to controller design of positive systems using controller gain decomposition,” J. Franklin Inst., vol. 354, no. 3, pp. 1356–1373, 2017.
  • [19] R.C. Dorf, M. Farren, and C. Phillips, “Adaptive sampling frequency for sampled-data control systems,” IEEE Trans. Autom. Contr., vol. 7, no. 1, pp. 38–47, 1962.
  • [20] P. Li et al., “Dynamic event-triggered control for networked switched linear systems,” in 2017 36th Chin. Contr. Conf., 2017, pp. 7984–7989.
  • [21] Y. Qi, P. Zeng, and W. Bao, “Event-triggered and self-triggered H1 control of uncertain switched linear systems,” IEEE Trans. Syst. Man Cybern. Syst., pp. 1–13, 2018.
  • [22] S. Xiao, Y. Zhang, and B. Zhang, “Event-triggered networked fault detection for positive Markovian systems,” Signal Process., vol. 157, pp. 161–169, 2019.
  • [23] Y. Yin et al., “Event-triggered constrained control of positive systems with input saturation,” Int. J. Robust Nonlinear Contr., vol. 28, no. 11, pp. 3532–3542, 2018.
  • [24] L. Liu et al., “Event-triggered control of positive switched systems based on linear programming,” IET Control Theory A., vol. 14, no. 1, pp. 145–155, 2020.
  • [25] H. Yang et al., “Non-fragile control of positive Markovian jump systems,” J. Frankl. Inst.-Eng. Appl. Math., vol. 356, no. 5, pp. 2742–2758, 2019.
  • [26] J. Zhang, T. Raïssi, and S. Li, “Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays,” Nonlinear Dyn., vol. 97, no. 1, pp. 1–19, 2019.
  • [27] D. Ding et al., “H1 state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 725–736, 2012.
  • [28] W. He et al., “Almost sure stability of nonlinear systems under random and impulsive sequential attacks,” IEEE Trans. Autom. Contr., vol. 65, no. 9, pp. 3879–3886, 2020.
  • [29] J. Hu et al., “On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism,” Informa. Sciences, vol. 511, pp. 265–283, 2020.
  • [30] J. Hu et al., “On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks,” Int. J. Gen. Syst., vol. 45, no. 5, pp. 619–632, 2016.
  • [31] J. Zhang et al., “Adaptive event-triggered communication scheme for networked control systems with randomly occurring nonlinearities and uncertainties,” Neurocomputing, vol. 174, pp. 475–482, 2016.
  • [32] Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 11–25, 2009.
  • [33] J. Zhang, X. Zhao, and X. Cai, “Absolute exponential L1-gain analysis and synthesis of switched nonlinear positive systems with time-varying delay,” Appl. Math. Comput., vol. 284, pp. 24–36, 2016.
  • [34] J. Zhang, H. Yang, and T. Rassi, “Stability analysis and saturation control for nonlinear positive Markovian jump systems with randomly occurring actuator faults,” Int. J. Robust Nonlinear Contr., vol. 30, no. 13, pp. 5062–5100, 2020.
  • [35] M.A. Rami, U. Helmke, and F. Tadeo, “Positive observation problem for linear time-delay positive systems,” in proceedings of 15th IEEE Med. Conf. Contr. Autom., 2007, pp. 5004–5009.
  • [36] P. Bolzern and P. Colaneri, “Positive Markov jump linear systems,” Found. Trends Syst. Contr., vol. 2, no. 3, pp. 275–427, 2015.
  • [37] D. Li et al., “Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching,” J. Differ. Equ., vol. 263, no. 12, pp. 8873–8915, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aeafe21f-065a-4c5c-a1b0-3b2d205b49de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.