PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analytical study of couple stress fluid through a sphere with an influence of the magnetic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work concerns to study of the steady, axisymmetric slow flow of couple stress fluid through a rigid sphere in the transverse magnetic field. Boundary conditions on the sphere surface are the zero couple stress condition and tangential slip condition. The stream function, vorticity vector, and pressure term are obtained. The drag acting on the sphere in the presence of MHD is calculated. Here, we graphically represented the Hartmann number, couple stress, and slip parameters effect on the drag coefficient. Some well-known results of the drag are deduced.
Rocznik
Strony
99--110
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Mathematics, National Institute of Technology, Raipur-492010 Chhattisgarh, India
autor
  • Department of Mathematics, National Institute of Technology, Raipur-492010 Chhattisgarh, India
Bibliografia
  • [1] Stokes, V.K. (1966). Couple stresses in fluids. The Physics of Fluids, 9(9), 1709-1715.
  • [2] Stokes, V.K. (2012). Theories of Fluids with Microstructure: An Introduction. Springer Science & Business Media.
  • [3] Devakar, M., Sreenivasu, D., & Shankar, B. (2014). Analytical solutions of couple stress fluid flows with slip boundary conditions. Alexandria Engineering Journal, 53(3), 723-730.
  • [4] Srinivasacharya, D., Srinivasacharyulu, N., & Odelu, O. (2011). Flow of couple stress fluid between two parallel porous plates. International Journal of Applied Mathematics, 41, 10-4.
  • [5] Ashmawy, E.A. (2016). Drag on a slip spherical particle moving in a couple stress fluid. Alexandria Engineering Journal, 55(2), 1159-1164.
  • [6] Aparna, P., Padmaja, P., Pothanna, N., & Murthy, J.V.R. (2020). Couple stress fluid flow due to slow steady oscillations of a permeable sphere. Nonlinear Engineering, 9(1), 352-360.
  • [7] Krishna Prasad, M., & Priya, S. (2022). Couple stress fluid past a sphere embedded in a porous medium. Archive of Mechanical Engineering, 69.
  • [8] Pan, Z., Jia, L., Mao, Y., & Wang, Q. (2022). Transitions and bifurcations in couple stress fluid saturated porous media using a thermal non-equilibrium model. Applied Mathematics and Computation, 415, 126727.
  • [9] Alsudais, N.S., El-Sapa, S. & Ashmawy, E.A. (2022). Stokes flow of an incompressible couple stress fluid confined between two eccentric spheres. European Journal of Mechanics-B/Fluids, 91, 244-252.
  • [10] Hadjesfandiari, A.R., & Dargush, G.F. (2010). Polar continuum mechanics. arXiv preprint arXiv:1009.3252.
  • [11] Hadjesfandiari, A.R., & Dargush, G.F. (2011). Couple stress theory for solids. International Journal of Solids and Structures, 48(18), 2496-2510.
  • [12] Hadjesfandiari, A.R., Dargush, G.F., & Hajesfandiari, A. (2013). Consistent skew-symmetric couple stress theory for size-dependent creeping flow. Journal of Non-Newtonian Fluid Mechanics, 196, 83-94.
  • [13] Hadjesfandiari, A.R., Hajesfandiari, A., & Dargush, G.F. (2015). Skew-symmetric couple-stress fluid mechanics. Acta Mechanica, 226(3), 871-895.
  • [14] Subramaniam, C.G., & Mondal, P.K. (2020). Effect of couple stresses on the rheology and dynamics of linear Maxwell viscoelastic fluids. Physics of Fluids, 32(1), 013108.
  • [15] Karami, F., Nadooshan, A.A., & Beni, Y.T. (2020). Analytical solution of Newtonian nanofluid flow in a tapered artery based on a consistent couple stress theory. Heat and Mass Transfer, 56(2), 459-476.
  • [16] Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150(3805), 405-406.
  • [17] Globe, S. (1959). Laminar steady state magnetohydrodynamic flow in an annular channel. The Physics of Fluids, 2(4), 404-407.
  • [18] Gold, R.R. (1962). Magnetohydrodynamic pipe flow. Part 1. Journal of Fluid Mechanics, 13(4), 505-512.
  • [19] Saad, E.l. (2018). Effect of magnetic fields on the motion of porous particles for Happel and Kuwabara models. Journal of Porous Media, 21(7).
  • [20] Sherief, H.H., Faltas, M.S., & El-Sapa, S. (2017). Pipe flow of magneto-micropolar fluids with slip. Canadian Journal of Physics, 95(10), 885-893.
  • [21] Krishna Prasad, M., & Priya, S. (2022). Slow flow past a slip sphere in cell model: magnetic effect. Recent Trends in Fluid Dynamics Research, 25-36.
  • [22] El-Sapa, S., & Faltas, M.S. (2022). Mobilities of two spherical particles immersed in a magneto-micropolar fluid. Physics of Fluids, 34(1), 013104.
  • [23] El-Sapa, S., & Alsudais, N.S. (2021). Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces. The European Physical Journal E, 44(5), 1-11.
  • [24] Happel, J., & Brenner, H. (2012). Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Springer Science & Business Media.
  • [25] Stokes, V.K. (1971). Effects of couple stresses in fluids on the creeping flow past a sphere. The Physics of Fluids, 14(7), 1580-1582.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aea81299-4ae8-4644-990f-97e10c9994a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.