PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interactive analysis of the results of NET-VISA, a Bayesian inference system, in CTBTO’s International Data Centre bulletin production

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Global Association model is a crucial tool in seismic data analysis at the International Data Centre (IDC) of the Compre- hensive Nuclear-Test-Ban Treaty Organization. However, it faces challenges due to its limitations in accurately associating seismic events on a global scale. Over the past years, attempts have been undertaken to tackle these issues by introducing the Network Processing Vertically Integrated Seismic Analysis (NET-VISA) algorithm, specifically designed to enhance seismic event association across the globe. NET-VISA uses a machine learning Bayesian approach to solve the automatic association problem. NET-VISA has been implemented in operation as an additional automatic event scanner tool since January 2018. In this study, we assess the effect of the NET-VISA automatic scanner on the IDC output REB and LEB bulletins. We used three distinct time periods to evaluate the NET-VISA performance. The results show a 4.6% increase in the number of LEB events after including the NET-VISA scanner in operation, with an average of 7 additional events per day, and an increase of 17.90% in the number of scanned events. A comparison between the different bulletins in distinct periods shows NET- VISA is beneficial to build more valid events, providing opportunities to improve nuclear-test-ban monitoring. However, NET-VISA exhibits slightly reduced performance for events occurring at depths exceeding 300 km.
Czasopismo
Rocznik
Strony
71--81
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Preparatory Commission for the Comprehensive Nuclear- Test-Ban Treaty Organization (CTBTO), International Data Centre (IDC), Vienna, Austria
  • National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo 11421, Egypt
  • Preparatory Commission for the Comprehensive Nuclear- Test-Ban Treaty Organization (CTBTO), International Data Centre (IDC), Vienna, Austria
  • Independent Scientific Consultant, Vienna, Austria
  • Preparatory Commission for the Comprehensive Nuclear- Test-Ban Treaty Organization (CTBTO), International Data Centre (IDC), Vienna, Austria
Bibliografia
  • 1. Ali SM, Shanker D (2016) Study of seismicity in the NW Himalaya and adjoining regions using IMS network. J Seismol 21(2):317-334. https://doi.org/10.1007/s10950-016-9603-7
  • 2. Ali SM, Le Bras RJ, Medinskaya T, Abdelrahman K (2022) Earthquake catalog improvements and their seismic hazard impacts for the Arabian Peninsula. J King Saud Univ Sci 34:101934. https://doi. org/10.1016/j.jksus.2022.101934
  • 3. Arora NS, Given J, Tomuta E, Russell S, Spiliopoulos S (2012) Analyst evaluation of model-based Bayesian seismic monitor¬ing at the CTBTO, in the 34th monitoring research review: ground-based nuclear explosion Monitoring Technologies. Albuquerque, New Mexico
  • 4. Arora NS, Russell S, Sudderth E (2013) NET-VISA: network process-ing vertically integrated seismic analysis. Bull Seismol Soc Am 103:709-729
  • 5. Arora NS, Russell S (2012) A model of seismic coda arrivals to suppress spurious events. European Geophysical Union (EGU2012-6763)
  • 6. Bondar I, North RG (1999) Development of calibration techniques for the comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System. Phys Earth Planet Int 113:11-24
  • 7. Bratt SR, Bache TC (1988) Location estimation using regional array data. Bull Seismol Soc Am 78:780-798
  • 8. Calo M, Fichtner A (2020a) Variational Bayesian seismic event detection and location (VISA)—part 1: theoretical and numerical aspects. Geophys J Int 221(2):1324-1342
  • 9. Calo M, Fichtner A (2020b) Variational Bayesian seismic event detection and location (VISA)—part 2: application to synthetic and real data. Geophys J Int 221(2):1343-1361
  • 10. Calo M, Bodin P, Krischer L, Tromp J, Fichtner A (2018) NET-VISA: network processing, event detection, and location and magnitude estimation using a variational Bayesian inference approach. Geophys J Int 213(2):1213-1229
  • 11. Cansi Y (1995) An automatic seismic event processing for detection and location: the PMCC method. Geophys Res Lett 22(9):1021- 1024. https://doi.org/10.1029/95gl0046
  • 12. Coyne J, Jia Y, Brogan R (2009) Relative contribution of the IMS stations to the reviewed event bulletin. CTBTO international scientific studies. Hofburg, Vienna, pp 10-12
  • 13. Geiger L (1910) Herdbestimmung bei erdbeden ans den ankunftzeiten.
  • 14. K Gessel Wiss Goett 4:331-349 ((in German))
  • 15. Geiger L (1912) Probability method for the determination of earth- quake epicenters from the arrival time only. Bull St Louis Univ 8:60-71
  • 16. Lay T, Wallace C (1995) Modern global seismology. Academic Press, San Diego
  • 17. Le Bras R, Swanger H, Sereno T, Beall G, Jenkins R (1994) Global association, Science Applications International Corp. Tech. Rept. ADA304805, San Diego, CA
  • 18. Le Bras R, Arora N, Kushida N (2020) NET-VISA from cradle to adulthood. A machine-learning tool for seismo-acoustic automatic association. Pure Appl Geophys. https://doi.org/10.1007/ s00024-020-02508-x
  • 19. Magotra N, Ahmed N, Chael E (1987) Seismic event detection and source location using single-station (three-component) data. Bull Seismol Soc Am 77:958-971
  • 20. Menke W (1989) Geophysical data analysis: discrete inverse theory.
  • 21. Academic Press, San Diego
  • 22. Myers SC, Johannesson G, Hanley W (2007) A Bayesian hierarchical method for multiple-event seismic location. Geophys J Int 171:1049-1063
  • 23. Roberts RG, Christoffersson A, Cassidy F (1989) Real-time event detection, phase identification, and source location estimation using single station three-component seismic data. Geophys J 97:471-480
  • 24. Russell S, Vaidya S, Le Bras R (2010) Machine learning for com- prehensive Nuclear-Test-Ban Treaty monitoring. CTBTO Spectr 14:32-35
  • 25. Sereno T, Patnaik G (1993) Initial wave-type identification with neural networks and its contribution to automated processing in IMS version 3.0. Tech. Rep., SAIC-93/1219. Waldhauser and Ellsworth, 2000
  • 26. Shanker D, Ali SM, Singh M (2017) Earthquake hazard and engineering determinations for Indonesian region using IMS network data. Geosciences 7(5):150-155. https://doi.org/10.5923/j.geo.20170 705.02
  • 27. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hay- ward fault, California. Bull Seismol Soc Am 90:1353-1368
  • 28. Wessel P, Smith WHF (1998) New version of the generic mapping tools released. Eos Trans Am Geophys Union 76:329
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aea3ecbf-9d4c-49ca-89bd-b58de3205ee9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.