Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the article a non-uniformity correction method is presented which allows to compensate for the influence of detector’s temperature drift. For this purpose, dependency between output signal value and the temperature of the detector array was investigated. Additionally the influence of the temperature on the Offset and Gain coefficients was measured. Presented method utilizes estimated dependency between output signal of detectors and their temperature. In the presented method, the shutter is used for establishing signal reference. Thermoelectric cooler is used for changing the temperature of the detector array.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
709--718
Opis fizyczny
Bibliogr. 11 poz., rys., wykr., wzory
Twórcy
autor
- Military University of Technology, Institute of Optoelectronics, Infrared Technology and Thermovision Section, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 49, Poland
autor
- Military University of Technology, Institute of Optoelectronics, Infrared Technology and Thermovision Section, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 49, Poland
autor
- Military University of Technology, Institute of Optoelectronics, Infrared Technology and Thermovision Section, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 49, Poland
autor
- Military University of Technology, Institute of Optoelectronics, Infrared Technology and Thermovision Section, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 49, Poland
autor
- Military University of Technology, Institute of Optoelectronics, Infrared Technology and Thermovision Section, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 49, Poland
Bibliografia
- [1] Kruse, P. W. (2002). Uncooled Thermal Imagining. The Society of Photo+Optical Instrumentation Engineers.
- [2] Milton, A. F., Barone, F. B., Kruer, M. R. (1985). Influence of nonuniformity on infrared focal plane array performance, Optical Engineering, 24(5), 855-862.
- [3] Krupiński, M., Bareła, J., Firmanty, K., Kastek, M., (2013). Test stand for non-uniformity correction of microbolometer focal plane arrays used in thermal cameras, Proc. SPIE, 8896, Electro-Optical and Infrared Systems.
- [4] Minassian, C., Tissot, J. L., Vilain, M., Legras, O., Tinnes, S., Fieque, B., Chiappa, J. M., Robert, P. (2008). Uncooled amorphous silicon Tec-less 1 VGA IRFPA with 25μm pixel-pitch for high volume applications Infrared Technology and Applications XXXIV, proc. of SPIE, 6940.
- [5] Mudau, A. E., Willers, C. J., Griffith, D., Roux, F. P. J. L. (2011). Non-Uniformity Correction and Bad Pixel Replacement on LWIR and MWIR Images Defense, IEEE.
- [6] Harris, J., Chiang, Y., (1999). Nonuniformity correction of infrared image sequences using the constant statistics constraint, IEEE TIP 8, 1148-1151.
- [7] Chao, Z., Qian, C., Guohua, G., Xiubao, S., Weixian, Q. (2011). Scene-based nonuniformity correction method using multiscale constant statistics, SPIE Optical Engineering, 50(8).
- [8] Hardie, R. C., Hayat, M. M., Armstrong, E., Yasuda, B. (2000). Scene-based non-uniformity correction with video sequences and registration, Appl. Opt. 39, 1241-1250.
- [9] Chao, Z. , Qian, C., Guohua, G., Xiubao, S., Jianle, R. (2012). Improved interframe registration based nonuniformity correction for focal plane arrays, Infrared Physics & Technology 55, 263-269.
- [10] Hayat, M. M. Ratliff, B. M., Tyo, J. S., Agi, K. (2004). Generalized Algebraic Algorithm for Scene-based Nonuniformity Correction, proc. of Spie, 5556, 122-136.
- [11] Bieszczad, G., Kastek, M. (2011). Measurement of thermal behavior of detector array surface with the use of microscopic thermal camera, Metrology and Measurement Systems, 18(4), 679-690.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aea3b0c3-1843-4d75-bd88-e63e244f15cc