PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial variability of summer hydrography in the central Arabian Gulf

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Arabian Gulf is a very significant ocean body, which hosts more than 55% of the oil reserves of the world and produces about 30% of the total production, and thus, it is likely to face high risk and adverse problems by the intensified environmental stressors and severe climatic changes. Therefore, understanding the hydrography of the Gulf is very essential to identify various marine environmental issues and subsequently, developing marine protection and management plans. In this study, hydrography data collected at 11 stations along 3 linear transects in the early summer of 2016 were analyzed. The physicochemical parameters exhibited apparent variations along each transect, both laterally and vertically, connected to stratification, formation of different water masses and excessive heating. The temperature and salinity decreased laterally from nearshore to offshore, while layered density structures were identified in the offshore regions. The pH, dissolved oxygen (DO) and chlorophyll fluorescence (Fo) exhibited distinct horizontal and vertical variations. The observed pH is within the normal ranges, indicating that seawater acidification may not be a threat. The highest DO (6.13–8.37 mg/l) was observed in a layer of 24—36 m water depth in the deeper regions of the central transect.
Czasopismo
Rocznik
Strony
75--87
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Environmental Science Center (ESC), Qatar University, Doha, Qatar
  • Environmental Science Center (ESC), Qatar University, Doha, Qatar
  • Environmental Science Center (ESC), Qatar University, Doha, Qatar
  • Environmental Science Center (ESC), Qatar University, Doha, Qatar
  • Environmental Science Center (ESC), Qatar University, Doha, Qatar
Bibliografia
  • 1. Abdel-Moati, M.A.R., Al-Ansari, I.S., 2000. Impact of the Expansion in Fertilizer Industry on the Levels of Ammonia and Urea of Messaieed Marine Area (Qatar), Arabian Gulf. Fresenius Envir. Bull. 9, 040-046. https://doi.org/10.1029/92JC00841
  • 2. Aboobacker, V.M., Shanas, P.R., Veerasingam, S., Ibrahim M.A.S. Al-Ansari, Fadhil N Sadooni, Vethamony, P., 2021a. Long-term assessment of onshore and offshore wind energy potentials of Qatar, Energies 14, 1178. https://doi.org/10.3390/en14041178
  • 3. Aboobacker, V.M., Shanas, P.R., Al-Ansari, E.M.A.S., Sanil Kumar, V., Vethamony, P., 2021b. The maxima in northerly wind speeds and wave heights over the Arabian Sea, the Arabian/Persian Gulf and the Red Sea derived from 40 years of ERA5 data. Clim. Dyn. 56, 1037-1052. https://doi.org/10.1007/s00382-020-05518-6
  • 4. Al-Ansari, E.M.A.S., Rowe, G., Abdel-Moati, M.A.R., Yigiterhan, O., Al-Maslamani, I., Al-Yafei, M.A., Al-Shaikh, I., Upstill-Goddard, R., 2015. Hypoxia in the central Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season. Estuar. Coast. Shelf Sci. 159, 60-68. https://doi.org/10.1016/j.ecss.2015.03.022
  • 5. Al-Ansari, I.M.A.S., 2006. A hydrographic and biogeochemical study of waters and sediment of the exclusive economic zone (EEZ) of Qatar (Arabian Gulf) Ph.D. thesis. the University of Newcastle upon Tyne, UK.
  • 6. Al Azhar, M., Temimi, M., Zhao, J., Ghedira, H., 2016. Modeling of circulation in the Arabian Gulf and the Sea of Oman: Skill assessment and seasonal thermohaline structure. J. Geophys. Res. Oceans 121, 1700-1720. https://doi.org/10.1002/2015JC011038
  • 7. Al-Majed, N., Mohammadi, H., Al-Ghadban, A., 2000. Regional Report of the State of the Marine Environment. ROPME/GX-10/001/1. Revised by Al-Awadi A., Regional Organization for the Protection of the Marine Environment. Available
  • 8. Al-Said, T.Yamamoto, Madhusoodhanan, R., Al-Yamani, F., Pokavanich, T., 2018. Summer hydrographic characteristics in the northern ROPME Sea Area: Role of ocean circulation and water masses. Estuar. Coast. Shelf Sci. 213, 18-27. https://doi.org/10.1016/j.ecss.2018.07.026
  • 9. Beltagy, A.I., 1983. Some oceanographic measurements in the Gulf waters around Qatar Peninsula. Qatar Univ. Sci. Bull. 3, 329-341.
  • 10. BP, 2011. Statistical Review of World Energey, June 2011. London SW1 Y 4PD, UK sr@bp.com
  • 11. Brewer, P.G., Dyrssen, D., 1985. Chemical oceanography of the Persian Gulf. Prog. Oceanogr. 14, 41-55. https://doi.org/10.1016/0079-6611(85)90004-7
  • 12. Campos, E.J.D., Gordon, A.L., Kjerfve, B., Vieira, F., Cavalcante, G., 2020. Freshwater budget in the Persian (Arabian) Gulf and exchanges at the Strait of Hormuz. PLoS ONE 15 (5), e0233090. https://doi.org/10.1371/journ
  • 13. Chao, S.Y., Kao, T.W., Al-Hajri, K.R., 1992. A numerical investigation of circulation in the Arabian Gulf. J. Geophys. Res. 97 (C7), 11219-11236. https://doi.org/10.1029/92JC00841
  • 14. Chen, H., Zhou, W., Chen, W., Xie, W., Jiang, L., Liang, Q., Huang, M., Wu, Z., Wang, Q., 2017. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo. J. Plant Physiol. 211, 128-135. https://doi.org/10.1016/j.jplph.2016.12.015
  • 15. Emery, K.O., 1956. Sediments and Water of the Persian Gulf. AAPG Bull 40, 2354-2383. https://doi.org/10.1306/5CEAE595-16BB-11D7-8645000102C1865D
  • 16. Fallatah, M.M., Kavil, Y.N., Ibrahim, A.S.A., Orif, M.I., Shaban, Y.A., Al Farawati, R., 2018. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant. Open Chem. 16, 245-257. https://doi.org/10.1515/chem-2018-0029
  • 17. Fofonoff, N.P., Millard, R.C., 1983. Algorithms for the computation of fundamental properties of seawater. UNESCO Tech. Papers Marine Sci. 44, 53. http://hdl.handle.net/11329/109.
  • 18. Ghaemi, M., Abtahi, B., Gholamipour, S., 2021. Spatial distribution of nutrients and chlorophyll a across the Persian Gulf and the Gulf of Oman. Ocean Coast. Manage. 201, 105476. https://doi.org/10.1016/j.ocecoaman.2020.105476
  • 19. Hunter, J.R., 1986. The physical oceanography of the Arabian Gulf: a review and theoretical interpretation of previous observations. In: Halwagy, R., Clyton, D., Behbehani, M. (Eds.), First Arabian Gulf Conference on Environment and Pollution. Kuwait, February 7-9, 1982. University of Kuwait, 1-23.
  • 20. Ibrahim, H.D., Xue, P., Eltahir, E.A., 2020. Multiple Salinity Equilibria and Resilience of Persian/Arabian Gulf Basin Salinity to Brine Discharge. Front. Marine Sci. 7, 573. https://doi.org/10.3389/fmars.2020.00573
  • 21. Ibrahim, H.D., Eltahir, E.A., 2019. Impact of brine discharge from seawater desalination plants on persian/arabian gulf salinity. J. Environ. Eng. 145, 04019084. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001604
  • 22. John, V.C., Coles, S.L, Abozed, A.I., 1990. Seasonal cycles of temperature, salinity and water masses of the western Arabian Gulf. Oceanologica Acta 13, 273-282.
  • 23. Jones, D.A., Price, A.R.G., Al-Yamani, F., Al-Zaidan, A., 2002. Coastal and marine ecology. In: Khan, N.Y., Munawar, M., Price, A.R.G. (Eds.), The Gulf Ecosystem: Health and Sustainability. Backhuys Publishers, Leiden, 65-103. https://doi.org/10.14321/J.CTT1TM7JKG.12
  • 24. Joydas, T.V., Qurban, M.A., Manikandan, K.P., Ashraf, T.T.M., Ali, S.M., Al-Abdulkader, K., Qasem, A., Krishnakumar, P.K., 2015. Status of macrobenthic communities in the hypersaline waters of the Gulf of Salwa, Arabian Gulf. J. Sea Res. 99, 34-46. https://doi.org/10.1016/j.seares.2015.01.006
  • 25. Kampf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Sci. 2, 27-41. https://doi.org/10.5194/os-2-27
  • 26. Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., Liu, Y., 2016. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 144, 264-272. https://doi.org/10.1016/j.chemosphere.2015.08.026
  • 27. Pous, S., Pascal, L., Xavier, C., 2015. A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: In-traseasonal to interannual variability. Cont. Shelf Res. 94, 55-70. https://doi.org/10.1016/j.csr.2014.12.008
  • 28. Prasad, T.G., Ikeda, M., Prasanna Kumar, S., 2001. Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea. J. Geophys. Res. 106 (C8), 17059-17071. https://doi.org/10.1029/2000JC000480
  • 29. Price, A., 2002. Simultaneous hotspots and coldspots of the marine biodiversity and the implications for global conservation. Mar. Ecol. Prog. Ser. 241, 23-27. https://doi.org/10.3354/meps241023
  • 30. Privett, D.W., 1959. Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf). Q.Roy. Meteor. Soc. 85, 424-428. https://doi.org/10.1002/qj.49708536614
  • 31. Rakib, F., Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan, O., Al-Maslamani, I., Aboobacker, V.M., Vethamony, P., 2021. Observed variability in physical and biogeochemical parameters in the central Arabian Gulf. Oceanologia 63 (2), 227-237. https://doi.org/10.1016/j.oceano.2020.12.003
  • 32. Reynolds, M, 1993. Physical oceanography of the Gulf, Strait of Hormuz and Gulf of Oman: results from the Mt. Mitchell expedition. Mar. Pollut. Bull. 27, 35-59. https://doi.org/10.1016/0025-326X(93)90007-7
  • 33. Reynolds, R.M., 2002. Oceanograpy. In: Khan, N.Y., Munawar, M., Price, A.R.G. (Eds.), The Gulf Ecosystem: Health and Sustainability. Backhuys Publishers, Leiden, 53-64.
  • 34. Rivers, J.M., Varghese, L., Yousif, R., Whitaker, F.F., Skeat, S.L., Al-Shaikh, I., 2019. The geochemistry of Qatar coastal waters and its impact on carbonate sediment chemistry and early marine diagenesis. J. Sediment. Res. 89, 293-309. https://doi.org/10.2110/jsr.2019.17
  • 35. Schlitzer, R., 2020.. Ocean Data View Latest ODV Version: ODV 5.3.0 (June 03 2020). https://odv.awi.de.
  • 36. Sezer, N., Evis, Z., Koc, M., 2017. Management of Desalination Brine in Qatar and the GCC Countries. 10th International Conference on Sustainable Energy and Environmental protection (June 27th—30th, 2017, Bled, Slovenia). University of Maribor Press. https://doi.org/10.18690/978-961-286-053-0.11
  • 37. Sheppard, C.R.C., 1993. Physical environment of the Gulf relevant to marine pollution: An overview. Mar. Pollut. Bull. 27, 3-8. https://doi.org/10.1016/0025-326X(93)90003-3
  • 38. Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, S.R.V., Jones, D.A., Loughland, R., Medio, D., Nithyanandan, M., Pilling, G.M., Polikarpov, I., Price, A.R.G., Purkis, S., Riegl, B., Saburova, M., Namin, K.S., Taylor, O., Wilson, S. Zainal, K., 2010. The Gulf: A young sea in decline. Mar. Pollut. Bull. 60, 13-38. https://doi.org/10.1016/j.marpolbul.2009.10.017
  • 39. Smith, R., Purnama, A., Al-Barwani, H.H., 2007. Sensitivity of hypersaline Arabian Gulf to seawater desalination plants. Appl. Math. Model. 31, 2347-2354. https://doi.org/10.1016/j.apm.2006.09.010
  • 40. Soliman, Y.S., Alansari, E.M.A., Sericano, J.L., Wade, T.L., 2019. Spatio-temporal distribution and sources identifications of polycyclic aromatic hydrocarbons and their alkyl homolog in surface sediments in the central Arabian Gulf. Sci. Total Environ. 658, 787-797. https://doi.org/10.1016/j.scitotenv.2018.12.093
  • 41. Swift, S.A., Bower, A.S. , 2003. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. 108, 4-1-4-21. https://doi.org/10.1029/2002jc001360
  • 42. Thoppil, P.G., Hogan, P.J., 2010. Persian Gulf response to a wintertime shamal wind event. Deep Sea Res. Pt. I 57, 946-955. https://doi.org/10.1016/j.dsr.2010.03.002
  • 43. Van Lavieren, H., Burt, J., Feary, D.A., Cavalcante, G., Marquis, E.,Benedetti, L., Trick, C., Kjerfve, B., Sale, P.F. , 2011. Managing the growing impacts of development on fragile coastal and marine ecosystems. Policy Report. UNU-INWEH, Hamilton, ON,Canada, 100 pp.
  • 44. Vasou, P., Vervatis, V., Krokos, G., Hoteit, I., Sofianos, S., 2020. Variability of water exchanges through the Strait of Hormuz. Ocean Dynam. 70, 1053-1065. https://doi.org/10.1007/s10236-020-01384-2
  • 45. Yao, F., Johns, W.E., 2010. A HYCOM modeling study of the Persian Gulf:1. Model configurations and surface circulation. J. Geophys. Res. 115, C11017. https://doi.org/10.1029/2009JC005781
  • 46. Yoshida, J., Matsuynmn, M., Senjyu, T., Ishimaru, T., Mopingaga, T., Arakwa, H., Kamatani, A., Maeda, M., Otsuki, A., Hashimato, S., Kasuga, I., Koike, Y., Mine, Y., Kurita, Y., Kitazawa, A., Noda, A., Hayashi, T., Miyazaki, T., Takahashi, K., 1998. Hydrography in the RSA during the RT/V Umitaka-Maru cruises. In: Otsuki, A., Abdeulraheem, M., Reyolds, M. (Eds.), Offshore Environment of the ROPME Sea Area after the War-Related Oil Spill — Results of the 1993—94 Umitaka-Maru Cruise. Terra Sci. Publ. Company, Tokyo, 1-22
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae9ea21e-32ef-4b2e-931d-0cc7ad3f11b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.