PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of fundamental elastic wave modes coupling in composite plates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the case of the piezoelectric actuators of the cube-shaped installed symmetrically and perfectly bonded on both external surfaces of the plate-like structures, the symmetric and shear horizontal elastic wave modes are excited at the same time. The current work concerns the numerical simulation of the coupling of the above-mentioned elastic wave modes in a composite plate of angle ply configuration. In the first step, the dispersion curves for all studied composite configurations are estimated. Next, for the arbitrary chosen fixed frequency of the excitation, finite element simulations are performed. As a result of these simulations, the group velocities of the observed elastic modes are estimated. Next, the appropriate wave modes are identified by the comparison of the group velocities obtained from the analysis of the dispersion curves and from the simulations. In the cases for which the identification is possible, a good agreement between analytical and simulation results is observed.
Rocznik
Strony
art. no. 2023120
Opis fizyczny
Bibliogr. 18 poz., il. kolor., rys., wykr.
Twórcy
autor
  • Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • 1. S. Zhongqing, Y. Lin; Identification of damage using Lamb waves; Springer-Verlag, 2009
  • 2. Z. Su, L. Ye, Y. Lu; Guided Lamb waves for identification of damage in composite structures; J. Sound Vib., 2006, 295, 753-780
  • 3. M. Barski, A. Stawiarski; The crack detection and evaluation by elastic wave propagation in open hole structures for aerospace application; Aerosp. Sci. Technol., 2018, 81, 141-156
  • 4. W.T. Thompson; Transmission of elastic waves through a stratified solid medium; J. Appl. Phys., 1950, 21(2), 89-93
  • 5. N. Haskell; Dispersion of surface waves on multilayered media; B Seismol. Soc. Am., 1953, 43, 17-34
  • 6. A.H. Nayfeh; The general problem of elastic wave propagation in multilayered anisotropic media; J. Acoust. Soc. Am., 1991, 89(4), 1521-1531
  • 7. M.A. Hawwa, A.H. Nayfeh; The general problem of thermoelastic waves in anisotropic periodically laminated composites; Compos. Eng., 1995, 5(12), 1499-1517
  • 8. L.A. Konopoff; Matrix method for elastic wave problems; B Seismol. Soc. Am., 1964, 43, 431-438
  • 9. L. Wang, S.I. Rokhlin; Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media; Ultrasonics, 2001, 39, 413-424
  • 10. S.I. Rokhlin, L. Wang; Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method; J. Acoust Soc Am., 2002, 112(3), 822-834
  • 11. M. Barski, P. Pająk; Determination of Dispersion Curves for Composite Materials with the use of Stiffness Matrix Method; Acta Mechanica et Automatica, 2017, 11(2), 121-128
  • 12. M. Barski, A. Muc, A. Stawiarski; The influence of the configuration of the fiber-metal laminates on the dispersion relations of the elastic wave modes; Vibrations in Physical Systems, 2020, 31(2), 2020202; DOI: 10.21008/j.0860-6897.2020.2.02
  • 13. A. Muc, M. Barski, A. Stawiarski, M. Chwał, M. Augustyn; Dispersion curves and identification of elastic wave modes for fiber metal laminates; Compos. Struct., 2021, 255; DOI: 10.1016/j.compstruct.2020.112930.
  • 14. F. Moser, L.J. Jacobs, J. Qu; Modelling elastic wave propagation in waveguides with the finite element method; NDT&E International, 1999, 32, 225-234
  • 15. D. Cerniglia, A. Pantano, N. Montinaro; 3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures; NDT&E International, 2010, 43, 527-535
  • 16. C. Willberg, S. Duczek, P.J. M. Vivar, D. Schmicker, U. Gabbert; Comparison of different higher order finite element schemes for the simulation of Lamb waves; Comput. Methods Appl. Mech. Eng., 2012, 241-244, 246-261
  • 17. P. Kudela, A. Żak, M. Krawczuk, W. Ostachowicz; Modelling of wave propagation in composite plates using the time domain spectral element method; J. Sound Vib., 2007, 302(4-5), 728-745
  • 18. W.M. Ostachowicz; Damage detection of structures using spectral finite element method; Computers & Structures, 2008, 86(3-5), 454-462
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae92509d-a6c5-4f66-b39b-8819d581b8cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.