PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Temper Bead Welding of S460N steel in wet welding conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wet welding is the most common method of welding in water environment. It is most often used for repairing of underwater parts of offshore structures. However, the water as a welding environment causes an increase of susceptibility of steels to cold cracking. For underwater constructions high strength low alloy (HSLA) steel are widely used. In wet welding condition a HSLA steel is characterized by high susceptibility to cold cracking. Temper Bead Welding (TBW) was chosen as a method to improve the weldability of S460N steel. The studies showed that TBW technique causes significant decrease of maximum hardness of heat affected zone (HAZ). The largest decrease in hardness occurred in specimens with the pitches in range 66-100%.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 32 poz., rys., wykr., tab.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Qiang X., Bijlaard F., Kolstein H.: Elevated-temperature mechanical properties of high strength structural steel S460N: Experimental study and recommendations for fire-resistance design. Fire Safety Journal. 55 (2013), 15-21.
  • 2. Topaç M.M., Günal H., Kuralay N.S.: Fatigue failure prediction of a rear axle housing prototype by using finite element analysis. Engineering Failure Analysis. 16(5) (2009), 1474-1482.
  • 3. Omajane J., Martikainen J., Kah P.: Weldability of thermo-mechanically rolled steels used in oil and gas offshore structures. The International Journal of Engineering And Science. 3(5) (2014), 62-69.
  • 4. Skowrońska B., Szulc J., Chmielewski T., Sałaciński T., Świercz R.: Properties and microstructure of hybride Plasma+MAG welded joints of thermomechanically treated S700MC steel, 27th Anniversary International Conference on Metallurgy and Materials (METAL), Brno, Czech Republik, 2018.
  • 5. Pańcikiewicz K., Tuz L., Żurek Z., Rakoczy Ł.: Optimization of filler metals consumption in the production of welded steel structures. Advances in Materials Science. 16(1) (2016), 27-34.
  • 6. Sajek A., Nowacki J.: Comparative evaluation of various experimental and numerical simulation methods for determination of t8/5 cooling times in HPAW process weldments. Archives of Civil and Mechanical Engineering. 18(2) (2018), 583-591.
  • 7. Górka J.: Assessment of steel subjected to thermomechanical control process with respect to weldability. Metals. 3(3) (2018), 169.
  • 8. Łabanowski J., Prokop-Strzelczyńska K., Rogalski G., Fydrych D: The effect of wet underwater welding on cold cracking susceptibility of duplex stainless steel. Advances in Materials Science. 16(2) (2016), 68-77.
  • 9. Li H. L., Liu D., Guo N., Chen H., Du Y. P., Feng J. C.: The effect of alumino-thermic addition on underwater wet welding process stability. Journal of Materials Processing Technology. 245 (2017), 149-156.
  • 10. Purnama D., Winarto W., Susilo F.H.: Mechanical properties of underwater wet welded marine steel plates using different low hydrogen electrodes. AIP Conference Proceedings 1977, 030015 (2018), 1-5.
  • 11. Yin Y., Yang X., Cui L., Cao J., Xu W.: Microstructure and mechanical properties of underwater friction taper plug weld on X65 steel with carbon and stainless steel plugs. Science and Technology of Welding and Joining. 21(4) (2016), 259-266.
  • 12. Heirani F., Abbasi A., Ardestani M.: Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy. Journal of Manufacturing Processes. 25 (2017), 77-84.
  • 13. Rogalski G., Fydrych D., Łabanowski J.: Underwater wet repair welding of API 5L X65M pipeline steel. Polish Maritime Research. SI 24 (93) (2017), 188-194.
  • 14. Chen H., Guo N., Shi X., Du Y., Feng J., Wang G.: Effect of water flow on the arc stability and metal transfer in underwater flux-cored wet welding. Journal of Materials Processing Technology. 31 (2018), 103-115.
  • 15. Shi Y., Hu Y., Yi Y., Lin S., Li Z.: Porosity and microstructure of underwater wet FCAW of duplex stainless steel. Metallography, Microstructure, and Analysis. 6(5) (2017), 383-389.
  • 16. Fydrych D., Łabanowski J., Tomków J., Rogalski G.: Cold cracking of underwater wet welded S355G10+N high strength steel. Advances in Materials Science. 15(3) (2015), 48-56.
  • 17. Maksimov S.Y.: Underwater arc welding of higher strength low-alloy steels. Welding International. 24(6) (2010), 49-54.
  • 18. Cheng F., Hu S., Gao W., Deng C., Wang D., Jing H.: Diffusible hydrogen content and microstructure characteristic in the joint by underwater shielded metal arc welding. Transactions of the China Welding Institution. 35(9) (2014), 45-48.
  • 19. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy. 42(38) (2017), 24532-24540.
  • 20. Fydrych D., Świerczyńska A., Tomków J.: Diffusible hydrogen control in flux cored arc welding process. Key Engineering Materials. 597 (2014), 171-178.
  • 21. Schaupp T., Rhode M., Kannengiesser T.: Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Welding in the World. 62(1) (2018), 9-18.
  • 22. Pandey C., Mahapatra M., Kumar P., Saini N.: Effect of weld consumable condition of the diffusible hydrogen and subsequent residual stress and flexural strength on multipass welded P91 steels. Metallurgical and Materials Transactions B. 49 (2018), 2881.
  • 23. Hanzaei A. T., Marashi S. P. H., Ranjbarnodeh E.: The effect of hydrogen content and welding conditions on the hydrogen induced cracking of the API X70 steel weld. International Journal of Hydrogen Energy. 43(19) (2018), 9399-9407.
  • 24. Li H., Liu D., Dong Y., Yan Y., Guo N., Feng J.: Microstructure and mechanical properties of underwater wet welded high-carbon-equivalent steel Q460 using austenitic consumables. Journal of Materials Processing Technology. 249 (2017), 149-157.
  • 25. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal. 1(2015), 8-15.
  • 26. Wang J., Sun Q., Jiang Y., Zhang T., Ma J., Feng J: Analysis and improvement of underwater wet welding process stability with static mechanical constraint support. Journal of Manufacturing Processes. 34 (2018), 238-250.
  • 27. Wang J., Sun Q., Laijun W., Liu Y., Teng J., Feng J.: Effect of ultrasonic vibration on microstructural evolution and mechanical properties of underwater wet welding joint. Journal of Materials Processing Technology. 246 (2017), 157-197.
  • 28. Tomków J., Rogalski G., Fydrych D., Łabanowski J.: Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. Journal of Materials Processing Technology. 262 (2018), 372-381.
  • 29. Aloraier A., Ibrahim R., Thomson P.: FCAW process to avoid the use of post weld heat treatment: International Journal of Pressure Vessels and Piping. 83(5) (2006), 394-398.
  • 30. Fydrych D., Świerczyńska A., Rogalski G., Łabanowski J.: Temper bead welding of S420G2+M steel in water environment. Advances in Materials Science. 16(4) (2016), 5-16.
  • 31. Tomków J., Łabanowski J., Fydrych D., Rogalski G.: Cold cracking of S460N steel welded in water environment. Polish Maritime Research. 25, 3 (99) (2018), 131-136
  • 32. Schröter F., Lehnert T.: Trends in the application of high-performance steel in European bridge building. The Eight International Conference „Bridges in Banube Basin”. (2013), 33-50.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae91e9f4-a794-4406-bc3b-7a3c35a90b93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.