

Tomasz TOKARSKI, Krzysztof OBŁĄKOWSKI, Janusz PARUCKI, Tomasz KUCHARZEWSKI, Tadeusz KWIATKOWSKI Air Force Institute of Technology (Instytut Techniczny Wojsk Lotniczych)

WYBRANE WADY SPRZĘGIEŁ JEDNO-KIERUNKOWYCH NA PRZYKŁADZIE ŚMIGŁOWCA Mi-24 – PRZYCZYNY, SKUTKI, DIAGNOZOWANIE Selected defects of one-way clutches based on Mi-24 helicopter – reasons, effects and diagnosing

Streszczenie: W pracy przedstawiono autorską metodę diagnozowania sprzęgieł jednokierunkowych śmigłowca Mi-24 na etapie wczesnego stadium ich zużywania, co jest trudne do wykrycia metodami tradycyjnymi (wibroakustycznymi). Metoda FAM-C oparta jest na analizie modulacji częstotliwości prądnicy pokładowej napędzanej z badanego zespołu napędowego. Umożliwia obserwację oddziaływania innych elementów mechanicznych na pracę tego sprzęgła: monitoruje praktycznie wszystkie obrotowe podzespoły statku powietrznego związane z przesyłem mocy mechanicznej. Celem pracy jest przegląd typowych uszkodzeń sprzęgieł jednokierunkowych w układzie napędowym śmigłowców, przedstawienie metody FAM-C jako podstawowej na etapie wczesnego diagnozowania tych uszkodzeń oraz potwierdzenie jej skuteczności na podstawie przytoczonych wyników.

Słowa kluczowe: wał transmisji śmigłowca, rezonans łożyska tocznego, sprzężenie rezonansowe, modulacja częstotliwości napięcia

Abstract: This manuscript describes the proprietary method of diagnosing one-way clutches of Mi-24 at their earlier wearing stage, which is challenging to diagnose with traditional methods (vibroacoustic). The FAM-C method is based on the analysis of frequency modulation of the on-board generator driven from the examined power unit. It enables to observe the influence of other mechanical elements on the operation of this clutch: it monitors all rotary subassemblies of aircraft connected with mechanical power transmission. The manuscript aims to review the typical defects of one-way clutches in helicopter propulsion systems, describe the FAM-C method as a basic method at the early diagnosing stage and confirm its efficiency based on the provided results.

Keywords: helicopter transmission shaft, resonance of rolling bearing, resonance coupling, frequency voltage modulation

1. Wprowadzenie do konstrukcji sprzęgieł jednokierunkowych

Obiekty techniczne podlegają procesom zużycia oraz uszkodzeniom na skutek zużywania się ich elementów, spowodowanego procesem tarcia, korozji, starzenia, zmęczenia materiałów itp. W obiektach o złożonej budowie proces ten nie przebiega jednakowo dla wszystkich jego elementów. Przykładem takiego obiektu technicznego są przekładnie lotnicze, w tym sprzęgła jednokierunkowe.

Lotnicze zespoły napędowe charakteryzują się specyficznymi cechami konstrukcyjnymi, m.in. niskimi (ze względu na konieczność minimalizowania masy) naddatkami materiałowymi elementów, występowaniem licznych przegubów, połączeń wielowypustowych, sprzęgieł, a także dużą trwałością i niezawodnością pracy w warunkach narażeń mechaniczno-klimatycznych. Jednym z wielu podzespołów zespołu napędowego jest sprzęgło jednokierunkowe, służące do łączenia i rozłączania wałów: napędowego oraz biernego [1, 4, 6–8, 10, 11–14]. W ten sposób sprzęgło przekazuje moment obrotowy z silnika na przekładnie i agregaty. Składa się ono z (rys. 1):

- członu napędzającego (elementy 1 i 2), znajdującego się na wale napędzającym. Istotnym elementem jest tu ukształtowanie bieżni wewnętrznej – nie jest ona cylindryczna jak dla łożysk tocznych, lecz jest nacięta w postaci skośnych pryzm (elementy 2a i 2b), tworząc pomiędzy bieżnią zewnętrzną a wewnętrzną nisze zwane gniazdami. W niszach tych znajdują się elementy toczne (element 6);
- 2. członu napędzanego (elementy 3 i 4) znajdującego się na wale napędzanym;
- 3. elementów łączących (element 6) człon napędzający z członem napędzanym:
 - w sprzęgłach wolnoobrotowych zapadki,
 - w sprzęgłach szybkoobrotowych elementy toczne: kulki lub wałki.

Sprzęgła jednokierunkowe z założenia zapewniają przenoszenie mocy tylko w jednym kierunku obrotów [1, 6, 8, 10–14]. Tego typu sprzęgło przenosi moment obrotowy w jedną stronę, a następnie umożliwia swobodny jego powrót w przeciwną. Zasada jego działania jest dość prosta:

- a) rozsprzęglanie w momencie gdy prędkość kątowa wału napędowego (czynnego) jest mniejsza od prędkości jego wału napędzanego (biernego), specjalne wałki lub kulki opadają na podstawy pryzm (rys. 1, element 2) i następuje rozłączenie sprzęgła.
- b) zasprzęglanie gdy moment sił działania wału czynnego jest większy niż wału biernego, wówczas zapadki, wałki lub kulki, na skutek nacisku siły odśrodkowej, wysuwają się z gniazd i przemieszczają w kierunku wierzchołka pryzmy, jednocześnie wywierają nacisk na część napędzaną – następuje załączenie sprzęgła, tj. połączenie obu wałów i zrównanie ich prędkości obrotowych. Aby nastąpiło zasprzęglanie i przekazywanie mocy mechanicznej na wał napędzany), muszą być spełnione warunki:

$$\omega_1(t) \ge \omega_2(t) \tag{1}$$

$$M_1(t) \ge M_2(t) \tag{2}$$

Warunki rozsprzęglenia:

$$\omega_1(t) < \omega_2(t) \tag{3}$$

$$M_1(t) < M_2(t) \tag{4}$$

Rys. 1. Sprzęgło jednokierunkowe, rysunek poglądowy: 1 – wał napędzający (wejście mocy mechanicznej); ω1 – prędkość kątowa wału napędzającego (czynnego); 2 – bieżnia wewnętrzna sprzęgła jednokierunkowego z pryzmami (tworząca integralną całość z wałem napędzającym); 2a – wierzchołek pryzmy; 2b – dół pryzmy; 3 – wał napędzany (wyjście mocy mechanicznej); ω2 – prędkość kątowa wału napędzanego; 4 – bęben bieżni zewnętrznej sprzęgła jednokierunkowego (podzespół napędzany); 5 – koszyk-separator sprzęgła jednokierunkowego; 6 – element toczny (kulka, wałek).

Sprzęgło jednokierunkowe w konstrukcjach lotniczych swoją konstrukcją przypomina łożysko toczne, jednak bieżnia wewnętrzna nie jest okrągła, tylko ma podcięcia (swoiste pryzmy) (rys. 1, elementy 2a, 2b). W sprzęgle jednokierunkowym mogą powstać nieprzewidziane rozłączenia, zwane przez praktyków zerwaniami, pomimo formalnego spełnienia warunków opisanych wzorami (1) \div (4). Powyższe zerwania mogą nastąpić na skutek [1, 6, 8, 10-14]:

1. Wystąpienia zmodulowań prędkości kątowej po stronie wejściowej lub wyjściowej, jeżeli prędkość obrotowa po stronie wyjściowej (np. na skutek drgań własnych podzespołu) ma składową pulsacji o amplitudzie zmodulowań większej niż różnica wartości średnich prędkości obrotowych ($\omega_2 - \omega_1$), rys. 2:

$$A_2 > |\omega_{2sr}| - |\omega_{1sr}| \tag{5}$$

pomimo że spełniony jest warunek:

$$|\omega_{1sr}| > |\omega_{2sr}| \tag{6}$$

 Wystąpienia zmodulowań prędkości kątowej po stronie wejściowej lub wyjściowej o amplitudzie zmodulowań mniejszej niż różnica wartości średnich prędkości obrotowych, ale o częstotliwości równej częstotliwości drgań własnych sprzęgła;

- 3. Uszkodzenia bieżni wewnętrznej sprzęgła jednokierunkowego na skutek:
 - udarów w czasie pracy z powodu impulsowego obciążenia po stronie wyjściowej,
 - przekoszenia osi symetrii wału wejściowego względem wyjściowego [2, 4],
 - mimośrodowego (równoległego) przesunięcia ww. wałów [4-6],
 - niestabilnego momentu obciążenia (M2) o znacznej dynamice zmian [4–6, 11–14],
 - nierównomiernego nacięcia separatora [8, 12].

Rys. 2. Przebieg zmodulowany po stronie wyjściowej sprzęgła jednokierunkowego, gdzie A₂ – amplituda pulsacji

2. Zerwanie połączenia wciskowego zewnętrznej bieżni pakietu sprzęgła jednokierunkowego śmigłowca Mi-24 z obudową przekładni WR-24

Zgodnie z [4], na śmigłowcu Mi-24 silnik połączony jest z przekładnią główną za pomocą sprzęgła biegu jałowego i korpusu półosi napędu. Połączenia prawego i lewego silnika są jednakowe (rys. 3, elementy 1, 3 i 5).

Sprzęgła jednokierunkowe śmigłowców są znacznie bardziej obciążone momentem statycznym niż sprzęgła jednokierunkowe w skrzynkach napędów samolotów z napędem turboodrzutowym. Wynika to z wielokrotnie większego momentu bezwładności, jaki jest po stronie biernej sprzęgła jednokierunkowego śmigłowca (rys. 4 i 5) niż po stronie biernej sprzęgła jednokierunkowego samolotu.

A. Moment bezwładności wirnika głównego jest obciążony następującymi masami:

- 1. wał śmigła nośnego (rys. 4, element 1) masa ok. 250 kg;
- 2. napęd wentylatora mechanicznego (rys. 4, element 2);
- 3. korpus (obudowa) przekładni WR-24 (rys. 4, element 3);
- 4. tarcza sterująca (rys. 4, element 9) masa ok. 48 kg;
- 5. łopata wirnika nośnego (rys. 4, element 10) 5 łopat, masa ok. 250 kg;
- 6. piasta wirnika nośnego (rys. 4, element 11) masa ok. 500 kg.

B. Moment bezwładności elementów ruchomych przekładni głównej WR-24 (rys. 5).

Zgodnie z literaturą [4] przekazywanie momentu obrotowego od silników na przekładnię główną WR-24 odbywa się przez połączenia wielowypustowe z wypustami o powierzchni sferycznej, umożliwiającymi niewielkie przekoszenia osi wałów silników z osiami wałów wejściowych.

Rys. 3. Schemat blokowy zespołu napędowego śmigłowca Mi-24: 1 – lewy silnik TW3-117MT; 2, 3 – trójfazowe prądnice tachometryczne (nadajniki obrotomierza) prawego i lewego silnika; 4 – prawy silnik; 5 – przekładnia główna WR-24; 6, 12 – prądnice GT-40PCz6 prawa i lewa; 7 – przekładnia końcowa; 8 – śmigło ogonowe; 9 – wały transmisji mocy; 10 – przekładnia kątowa; 11 – skrzynka napędu agregatów; 13, 14 – prądnice tachometryczne D-1M reduktora głównego; I÷V – podpory łożyskowe silnika TW-3-117MT [10]

Rys. 4. Przekładnia WR-24 – widok ogólny: 1 – wał śmigła nośnego; 2 – napęd wentylatora mechanicznego; 3 – korpus (obudowa) przekładni WR-24; 4 – wejścia mocy; 5 – sprzęgła jednokierunkowe; 6 – króciec odpływu oleju do chłodnic; 7 – wał łączący; 8 – silnik TW-3; 9 – tarcza sterująca; 10 – łopata wirnika nośnego; 11 – piasta wirnika nośnego

Rys. 5. Schemat dynamiczny przekładni głównej WR-24 śmigłowca Mi-24: a) przekrój przekładni: 1 – napęd pradnicy jednofazowej pradu przemiennego GO-16PCZ8; 2 – napędy nadajników obrotomierzy; 3 - napęd pompy hydraulicznej NSz-39M; 4 - gniazda wejściowe wału napędowego silnika TW-2 lewego (4a) i prawego (4b); 5 – napęd wentylatora mechanicznego; 6 – wał główny wirnika nośnego; 6a – wielowypust do połączenia z piastą wirnika nośnego; 6b – gwint drobnozwojny, na który nakręcana jest nakrętka dociskająca piastę do wału głównego wirnika nośnego; 7 – napęd wału transmisji (wału tylnego); 8 – napęd sprężarki AK-50T1 (AK-50T); 9 – naped agregatu olejowego; 10 – korpus jarzma stopnia planetarnego połaczony strukturalnie z uzebieniem wewnetrznym Z106; 11 – korpus jarzma połaczony strukturalnie z wałem głównym; 11a – wielowypust łączący korpus jarzma z jarzmem; 12 – dolna część wału głównego (wirnika nośnego) stanowiąca bieżnie wewnetrzną łożysk górnych (I₁) i (I₂); (I₃) – łożysko toczne wału wejściowego przekładni planetarnej; (I₄) – dolne łożysko podporowe wału głównego (łożysko przekładkowe pomiędzy wałem głównym a wałem wejściowym przekładni planetarnej); (I₅) – łożysko wałeczkowe cylindryczne wału wejściowego przekładni planetarnej; (I6) – łożysko kulkowe oporowe wału wejściowego przekładni planetarnej; b) widok jarzma stopnia planetarnego od góry; c) wał główny po wymontowaniu z przekładni: Z29 – koło zebate satelita I stopnia przekładni planetarnej; Z31 - koło zębate słoneczne przekładni planetarno-różnicowej

Przekazanie momentu obrotowego na wał wirnika odbywa się przez trzy stopnie przekładni (rys. 5) [7, 10]:

- 1. Pierwszy stopień przekładni przekazuje obroty od dwóch silników poprzez sprzęgła jednokierunkowe (sprzęgła biegu jałowego) i koła zębate Z33 na walcowe koło zębate Z95 o zębach skośnych.
- Drugi stopień koło zębate Z31 (tworzące moduł współosiowy z kołem zębatym Z95) napędza koło zębate Z66. To ostatnie jest sztywno przymocowane do drążonego wału (element W2), który napędza dwustopniową przekładnię planetarną.
- Dwustopniowy moduł planetarny (elementy: Z48, Z31, Z29), zapewniający najwyższą redukcję prędkości obrotowej w jednostce objętości. Na wyjściu tego modułu jest jarzmo (element 11) połączone sztywno strukturalnie z wałem głównym wirnika nośnego (element 6).

Na rys. 6 przedstawiono przekrój węzła sprzęgła jednokierunkowego śmigłowca Mi-24 [10]. Podstawowymi elementami są wał wejściowy (element 2) oraz wał wyjściowy (element 5) – wał napędzany. Wał wejściowy od strony przekładni WR-24 zakończony jest bieżnią (element 6). Bieżnia ta umieszczona jest wewnątrz wału wyjściowego – początek wału wyjściowego jest ukształtowany w postaci bębna stanowiącego bieżnię zewnętrzną (element 6), tworzącą tzw. przestrzeń pierścieniową [6, 11–14]. Wewnątrz przestrzeni pierścieniowej części napędzanej sprzęgła jedno-kierunkowego znajduje się część napędzająca. Ma ona 16 wycięć (pryzm) [10]. Pomiędzy częścią napędzającą a napędzaną jest 16 wałków (rolek) i separator. Gdy wał napędzający osiągnie prędkość obrotową wału napędzanego, wówczas rolki zaklinują się w wycięciach wału napędzającego i oba wały pracują jako całość. Jeżeli wał napędzający zmniejszy prędkość obrotową lub w ogóle się zatrzyma, a wał napędzany na skutek inercji wirnika nośnego i transmisji lub pod działaniem drugiego silnika będzie się dalej obracać i wyprzedzać wał napędzający, wówczas rolki odklinują się i wały się rozłączą.

Wał napędzany sprzęgła jest podparty na dwóch łożyskach widocznych na rys. 6, 7 i 9 [10]:

- a) kulkowym¹ (rys. 6, element 7; rys. 7; rys. 9, element 3) zamontowanym na pokrywie przedniej (rys. 6, element 13),
- b) wałeczkowym² (rys. 6, element 10), znajdującym się w korpusie przekładni.

Łożysko a jest wciśnięte w gniazdo (na pokrywie przedniej) za pośrednictwem tulei pośredniczącej (rys. 6, element 7; rys. 9, element 8). Łożysko to wraz z tuleją pośredniczącą przenosi znaczne siły promieniowe związane z dynamiką procesu sprzęgania i rozprzęgania sprzęgła oraz znaczne siły poosiowe wywoływane skośnymi zębami koła zębatego Z33 (rys. 6, elementy 4 i 12; rys. 7, element 12).

Siły te oddziaływają dynamicznie na blokujący łożysko pierścień Segera (rys. 6, element 5) oraz na tuleję pośredniczącą, a właściwie na kołki ustalające tę tuleję (rys. 6, element 9; rys. 6a, element 2; rys. 7, element 9) do korpusu pokrywy.

¹ łożysko kulkowe ($D_w = 89,5, d_k = 22,3, N = 12$).

² łożysko wałeczkowe ($D_w = 73, 6, d_k = 9, 2, N = 14$).

Rys. 6. Przekrój wezła sprzegła jednokierunkowego, rysunek poglądowy. Część czynna: 1 – wejście wału wielowypustowego silnika TW-3; 2 - wał wejściowy - wrzeciono wejściowe sprzegła jednokierunkowego; 3 – łożysko toczne kulkowe (Dw = 102, dk = 10, 3, N = 18); 4 – element toczny – wałek (Dw = 90, dk = 22,8, N = 16) sprzegła jednokierunkowego; część bierna: 5 – beben bieżni zewnętrznej sprzegła jednokierunkowego - wrzeciono wyjściowe sprzegła jednokierunkowego; 6 – bieżnia wewnętrzna sprzęgła jednokierunkowego (z pryzmami); 7 – łożysko kulkowe (Dw = 89,5, dk = 22,3, N = 12); 8 – tuleja pośrednicząca pomiędzy korpusem głównym przekładni a pierścieniem zewnętrznym łożyska kulkowego (N = 12 kul); 9 – gwintowany kołek blokujący pokrywę łożyska; 10 -łożysko wałeczkowe (Dw = 73.6, dk = 9,2, N = 14); 10a – bieżnia łożyska wałeczkowego, tuleja osadzona na wcisk na wrzecionie sprzegła jednokierunkowego; 10b – nakrętka blokująca bieżnię łożyska wałeczkowego; 11 - korpus główny przekładni; 12 - koło zębate walcowe z zębami skośnymi; 13, 16 – nadlew korpusu sprzęgła jednokierunkowego; 14 – łożysko wałeczkowe (Dw = 32, dk = 6,5, N = 14); 15 – rozprężny pierścień Segera blokujący ruchy podłużne łożyska tocznego; F - kierunek siły poosiowej od skośnego kształtu zebów kół Z33 oraz Z95 [10]

Rys. 7. Wezeł sprzegła jednokierunkowego po demontazu: a) część czynna: 1 – wejście wału wielowypustowego silnika TW-3; 2 - wał napędzany (wyjście mocy mechanicznej) wrzeciono wejściowe sprzęgła jednokierunkowego; $3 - 10^{2}$ ysko toczne kulkowe (Dw = 102, dk = 10,3, N = 18; 4 – koszyk-separator (N = 16) sprzęgła jednokierunkowego; b) część **bierna:** 5 – bęben bieżni zewnętrznej sprzęgła jednokierunkowego – wrzeciono wyjściowe sprzęgła jednokierunkowego (podzespół napędzany); 6 – bieżnia wewnętrzna sprzęgła jednokierunkowego (z pryzmami, tj. ze skośnymi elementami bieżni); 7 - łożysko kulkowe (Dw = 73,6 mm, dk = 9,2 mm, N = 14); 8 - tuleja lożyska kulkowego (N = 12);9 – gwintowany kołek blokujący pokrywę łożyska; 12 – koło zębate (Z33) walcowe z zębami skośnymi; 13 – nadlew korpusu sprzegła jednokierunkowego; 14 – łożysko wałeczkowe (Dw = 102, dk = 10,3, N = 18); 15 – rozprężny pierścień Segera zabezpieczający bieżnię wewnętrzna łożyska kulkowego przed osiowym przemieszczeniem względem tulei; c) bieżnia zewnętrzna łożyska kulkowego (N = 12) wezła sprzegła jednokierunkowego: 16 – ślady ocierania bieżni wewnętrznej o pierścień Siegera, co świadczy o zerwaniu pasowania pomiędzy ww. łożyskiem a gniazdem łożyskowym i poluzowaniu tulei pośredniczącej

Rys. 8. Węzeł sprzęgła jednokierunkowego – tuleja łożyska kulkowego śmigłowca Mi-24: a) po długotrwałej pracy z poluzowanymi gwintowanymi kołkami blokującymi: 1 – nadlew korpusu sprzęgła jednokierunkowego; 2 – tuleja łożyska kulkowego (N = 12); 3 – (ścięty) gwintowany kołek blokujący pokrywę łożyska; 4 – koło zębate z33; 5 – czop łożyska wałeczkowego (N = 14) – końcówka wrzeciona części biernej sprzęgła jednokierunkowego; b) po ścięciu gwintowanych kołków blokujących w warunkach eksploatacyjnych: 6 – ślady silnego zużycia powierzchni zębów na skutek długotrwałej pracy w warunkach dynamicznych uderzeń sprzęgła jednokierunkowego; 7 – miejsce frezowania korpusu głównego przekładni przez czoło koła Z33, które uległo poosiowemu przemieszczeniu (po ścięciu gwintowanego kołka blokującego pokrywę łożyska)

Według badań ITWL, elementy ustalające stosowane w zakładzie remontowym do blokowania tulei w gnieździe (rys. 9, element 2) nie zapewniają gwarantowanej wytrzymałości. Należy zaznaczyć, że według oryginalnej technologii producenta rosyjskiego stosowany powinien być kołek o powierzchni gładkiej wciskany w mniejszy otwór nawiercony w tulei pośredniczącej i korpusie odlewu obudowy pod kątem prostym. Tymczasem zakład remontowy (według stanu na dzień 30.12.2015) stosuje rozwiązanie z literatury [10]:

- 1. Elementy ustalające stosowane w zakładzie remontowym (do blokowania tulei w gnieździe) mają niższą gęstość materiału, a więc i niższą twardość niż elementy ustalające stosowane przez producenta.
- 2. Elementy ustalające stosowane w zakładzie remontowym są gwintowane i wkręcane (wg oryginalnej technologii), co powoduje zjawisko karbu. Typowe połączenie śrubowe ma tak znaczne luzy, że nie powinno być stosowane do blokowania ww. tulei, z uwagi na występowanie w węźle sprzęgła jednokierunkowego, znacznych sił skręcających oraz udarów i wibracji o znacznej wartości amplitudy i szerokim spektrum częstotliwości – oryginalne kołki (stosowane przez producenta rosyjskiego) mają ścianki cylindryczne gładkie i są wciskane w otwór (tj. stosuje się połączenie wciskowe, a nie śrubowe).
- 3. Oś symetrii nawierceń wykonywanych w zakładzie remontowym jest skośna do promienia wodzącego tulei (rys. 9b, element 2) producent montuje kołki

promieniowo (rys. 9b, element 1). Skośne położenie kołka zmniejsza jego sztywność i odporność na udary i wibracje. Istnieje też możliwość jego drgań i przemieszczeń podczas wibracji śmigłowca. Należy nadmienić, że połączenie kołkowe stosowane przez producenta rosyjskiego nie ma żadnych luzów lub nisz powietrznych, gdyż jest montowane na wcisk (rys. 9b, element 1) – element łączący nie ma możliwości wzbudzeń rezonansowych, gdyż stanowi w ten sposób jednolitą całość z korpusem przekładni.

Rys. 9. Widok powierzchni odlewu od strony montażu tulei dystansowej: a) widok ogólny: 1 – kołek zamontowany przez producenta (zaszlifowany po demontażu w typowym procesie remontowym); 2 – kołek gwintowany zamontowany przez zakład remontowy [fot. Stanisław Klukowski]; b) tomografia rentgenowska: 1 – kołek zamontowany przez producenta (zaszlifowany po demontażu w procesie remontowym); 2 – kołek gwintowany zamontowany przez zakład remontowany przez zakład remontowany przez zakład remontowy; 3 – powierzchnia od strony montażu tulei dystansowej [wyk. Artur Kułaszka, Janusz Giewoń, Marek Chalimoniuk]

Przedstawiciele zakładu remontowego przyznali, że w dotychczasowej eksploatacji zdarzyły się trzy przypadki podobnych niesprawności prawego gniazda łożyska przekładni WR-24 eksploatowanych w lotnictwie czeskim oraz trzy przypadki w lotnictwie Sił Zbrojnych RP [10]. Jednocześnie z informacji pozyskanych oficjalnie od producenta rosyjskiego wynika, że tego typu niesprawności nie wystąpiły w przekładniach remontowanych w Rosji.

3. Metoda FAM-C i jej zastosowanie do diagnozowania sprzęgieł jednokierunkowych

Metody FAM-C i FDM-A wywodzą się z praktyki eksploatacyjnej oraz analizy literatury z różnych dziedzin nauki i techniki: elektrotechniki, elektromechaniki, mechaniki, teorii sygnałów – są ich swoistą kompilacją, tworzącą nowy sposób pozyskiwania bieżącej informacji o stanie technicznym badanych zespołów napędowych [3, 8–10, 15]. Zastosowanie omawianych metod diagnostycznych umożliwia przejście do modelu dynamicznego, bazującego na zasadzie zachowania energii, w którym jako przetwornik zastosowano prądnicę pokładową. Zespół autorów postanowił wykorzystać (dotychczas filtrowane lub ignorowane) składowe szybkozmienne [$\Delta u_{AM}(t) + \Delta u_{FM}(t) + \Delta u_{PM}(t)$] jako źródło informacji diagnostycznej o stanie technicznym mechanicznego zespołu napędowego [3, 8, 15].

Rys. 10. Schemat poglądowy prądnicy prądu przemiennego [10]

Jako przetwornik wybrano prądnicę pokładową, gdyż:

- prądnice i sieć elektryczna są na każdym statku powietrznym,
- modulacja częstotliwości jest taka sama w każdym punkcie sieci elektrycznej możliwość przyłączania aparatury pomiarowej w dowolnym miejscu dowolnie odległym od miejsc zagrożeń,
- niski koszt toru pomiarowego i dozorowania,
- modulacje częstotliwości prądnicy pokładowej są w naturalny sposób zsynchronizowane z obiektem badań.

Stworzono autorski sposób analizy dynamiki zmian przyrostu przejść przez poziom zerowy poprzez zastosowanie metod omówionych w literaturze [3, 8]:

a) utworzenie zbioru podwojonej odwrotności przyrostów czasów przejść przez poziom zerowy – wartości te miały wymiar częstotliwości, które nazwano

częstotliwościami chwilowymi i oznaczono jako f_i , przebieg $f_i(t)$ odzwierciedla, w sposób dyskretny przebieg analogowy zmian prędkości kątowej (rys. 11a);

b) wyznaczenie wartości średniej częstotliwości f_{sr} dla k próbek częstotliwości chwilowej (rys. 11a)

$$f_{sr} = \frac{1}{k} \sum_{i=1}^{i=k} f_i$$
(7)

c) oznaczenie ekstremów lokalnych przebiegu $f_i(t)$, rys. 11a, każdemu z tych ekstremów przyporządkowano czas odchylenia od poziomu wartości średniej częstotliwości f_{sr} . Czas trwania odchylenia oznaczono jako t_{od} , natomiast wartość amplitudy odchylenia oznaczono jako ΔF ;

d) przeniesienie parametrów każdego ekstremum (
$$\frac{1}{2 * t_{od}}$$
, ΔF), rys. 11c, na

płaszczyznę współrzędnych prostokątnych $\Delta F = f(f_p)$, gdzie:

$$f_{\rm p} = \frac{1}{2 * t_{od}} \tag{8}$$

Metoda FAM-C [3, 8–9] umożliwia wykrywanie m.in. wczesnego stadium zerwań pasowania elementu mechanicznego, jak np. sprzęgła jednokierunkowe w postaci tzw. impulsów zanikowych, tj. chwilowego obniżenia chwilowej prędkości obrotowej części biernej (tu: chwilowego obniżenia częstotliwości chwilowej poniżej linii odniesienia $f_{\rm N}$ =1800 Hz, tj. 0,707 $f_{\rm N}$) (rys. 12, elementy 1÷4).

Zagrożenie struktury zespołu napędowego po stronie biernej sprzęgła jest znacznie mniejsze niż dla sprzęgieł jednokierunkowych samolotu, np. MiG-29. Dla śmigłowca Mi-24 nie zaobserwowano impulsów wybiciowych, tak charakterystycznych dla zerwań w skrzynkach napędów samolotów turboodrzutowych.

Rys. 11. Przemiana sygnału wahań prędkości kątowej na zmiany częstotliwości chwilowej napięcia wyjściowego prądnicy w metodzie FAM-C – kolejne fazy przekształcania sygnału chwilowej prędkości kątowej (zmodulowanej częstotliwościowo w zależności od stanu technicznego) danego podzespołu mechanicznego w zbiór charakterystyczny odzwierciedlający stan techniczny tego podzespołu: a) przebieg zmian prędkości kątowej wału $\omega m = f(t) -$ przedstawiono przykładowo dwa odchylenia tego przebiegu od wartości średniej o wartości $\Delta\Omega$ 1 oraz $\Delta\Omega$ 2 (czerwona linia ciągła); przebieg zmian wartości chwilowej częstotliwości $f_i = f(t)$ – przedstawiono przykładowo dwa odchylenia tego przebiegu od wartości średniej o wartości Δ F1 oraz Δ F2 (niebieska linia przerywana); t_{od1}; t_{od2} – czas trwania odchylenia przebiegu częstotliwości chwilowej od częstotliwości średniej; b) przebieg napięcia wyjściowego prądnicy pokładowej u = f(t) – zmodulowania częstotliwości tego napięcia odzwierciedlają stan techniczny podzespołu mechanicznego (zielona linia ciągła); c) sposób tworzenia punktów charakterystycznych na plaszczyźnie $\Delta F = f(fp)$ – każdy punkt odpowiada jednemu odchyleniu przebiegu częstotliwości chwilowej $f_i = f(t)$ od częstotliwości średniej

Rys. 12. Przebieg częstotliwości w funkcji czasu otrzymany z kanału pomiarowego 3x47 V, 800 Hz Mi-24, czas obserwacji 4 s: a) początkowa faza zerwań przy nieznacznym zużyciu: 1 – impulsy zanikowe (0,3÷0,6) ms; b) intensywne zerwania przy znacznym zużyciu: 2, 3, 4 – impulsy zanikowe (0,2÷0,8) s

Jednocześnie dla impulsów zanikowych o zbliżonych parametrach dla MiG-29 notowano ukręcenia wałków agregatów [8], podczas gdy dla Mi-24 nie zanotowano żadnych urwań [10], a jedynie wzmożone zużycie elementów. To stosunkowo "tolerancyjne" znoszenie zerwań sprzęgła jednokierunkowego przez strukturę śmigłowca (w stosunku do struktury skrzynki napędów samolotu turboodrzutowego) wynika z:

- 1. zwiększonych naddatków materiałowych elementów transmisji śmigłowców.
- 2. zwiększonych momentów bezwładności podzespołów śmigłowców.
- zwiększonych momentów tłumienia aerodynamicznego (śmigło główne pełni tu funkcję swoistego tłumika drgań).

4. Metoda FAM-C w diagnozowaniu sprzęgieł jednokierunkowych śmigłowców

W celu oceny stopnia zużycia sprzęgła jednokierunkowego, należy śledzić czas trwania impulsu zanikowego oraz częstotliwość występowania tych impulsów. Czas trwania impulsu zanikowego jest przeliczony na kąt obrotu i porównany z wartościami granicznymi.

Wstępnie można stosować wartości graniczne z innych (niż śmigłowce Mi-24) statków powietrznych, które zostały określone na podstawie badań:

- a) problem zrywania pasowania wciskowego łożyska tocznego z badań podpór łożyskowych silnika SO-3 na samolocie TS-11 Iskra [8, 10];
- b) analiza czasu trwania poślizgu sprzęgła jednokierunkowego z badań diagnostycznych przekładni KSA-2 samolotu MiG-29 [6, 8].

Pomiar czasu trwania impulsu zanikowego określa się na poziomie 0,707 wartości częstotliwości znamionowej [10]. Przy wykorzystaniu napięcia podwzbudnicy i pomiarze trójfazowym metodą FAM-C, częstotliwość znamionowa wynosi $f_N = 2400$ Hz, stąd poziom wykrywania impulsu zanikowego (przez analogię do techniki radiowej) określany na poziomie 0,707 tej wartości wynosi 1700 Hz. Poziom pomiaru czasu trwania impulsu zanikowego ustalono na 50% f_N , tj. 1200 Hz. Otrzymane przyrosty czasu pomiędzy punktami przecięcia krzywej przebiegu $f_i = f(t)$ z linią (przerywaną) poziomu 1200 Hz przeliczano na wartość kątową. W przypadku przedstawionym na rys. 12 wynoszą one:

- a) dla stanu początkowego zużycia (0,3÷0,6) ms (rys. 12a). Zważywszy na to, że wał wejściowy sprzęgła jednokierunkowego obraca się z prędkością 250 obr/s, to będzie to odpowiadało kątowi od 27° do 54°. Ponieważ sprzęgło jednokierunkowe ma 16 wałeczków, czas zerwań będzie odpowiadał od 1 do 2 podziałek koszyka separatora sprzęgła jednokierunkowego.
- b) w przypadku zaawansowanego zużycia (0,2÷0,8) s (rys. 12b), a więc są średnio około 1000 razy dłuższe niż w przypadku a. Czas ten odpowiada (50÷200) obrotom wału sprzęgła jednokierunkowego. W tym wypadku czas zerwań jest już groźny dla bezpieczeństwa konstrukcji, gdyż odpowiada to (0,8÷3,2) obrotu wirnika nośnego. Z uwagi na wysoki moment bezwładności tego wirnika, gdyby np. na skutek oporów wewnętrznych łożyska górnego lub wzrostu oporów innych podzespołów mechanicznych przekładni głównej doszło w okresie zerwania połączenia sprzęgła jednokierunkowego do znacznego obniżenia prędkości kątowej, to po zasprzęgleniu mogłoby dojść do poważnych uszkodzeń zarówno samego sprzęgła jednokierunkowego, jak i kół zębatych w przekładni głównej. Prawdopodobnie z tego powodu konstruktorzy w strukturze przekładni głównej zastosowali nawet przy wałach wolnoobrotowych łożyska toczne, które, jak wiadomo z literatury, mają ponad 20-krotnie niższy współczynnik oporu niż łożyska ślizgowe.

5. Podsumowanie

- 1. Wykonane badania i pomiary, opisane w niniejszym artykule, przedstawiły metodę FAM-C jako nowatorski i tani sposób diagnozowania sprzęgieł jednokierunkowych na etapie ich wczesnego stadium zużywania oraz monitorowania jego rozwoju w procesie eksploatacji.
- 2. Metoda wibroakustyczna stosowana dotychczas przy diagnozowaniu awarii sprzęgieł jednokierunkowych nie wykrywa awarii na tym stadium eksploatacji.
- 3. Odstępstwa przez zakład remontowy od pierwotnej technologii producenta są zgubne dla trwałości sprzęgieł jednokierunkowych.
- 4. Zespół badawczy wykorzystuje metodę FAM-C również do diagnozowania uszkodzeń innych elementów układu napędowego statków powietrznych.

6. Literatura

- 1. Borgoń J., Stukonis M., Szymczak J.: Czy uszkodzenia połączeń wielowypustowych w silnikach lotniczych mogą spowodować wypadki lotnicze. Informator ITWL nr 311/93, Techniczne problemy eksploatacji i niezawodności wojskowych statków powietrznych, Kiekrz 1993.
- Bird N.B., Vinogradov A.: Ratcheting One-Way Clutches in Torque Converters. Conference: WCX[™] 17: SAE World Congress Experience. March 2017, DOI: 10.4271/2017-01-1117.
- Charchalis A., Grządziela A.: Diagnozowanie stanu współosiowości elementów transmisji momentu obrotowego metodą pomiaru sygnałów wibroakustycznych z łożyska nośnego. Problemy Eksploatacji nr 2/99.
- 4. Cheon Gillo-Jeong: Nonlinear behavior analysis of spur gear pairs with a one-way clutch. Journal of Sound and Vibration, Vol. 301, Iss. 3-5, 2007. DOI: 10.1016/j.jsv.2006.10.040.
- 5. Cheon Gillo-Jeong: Experimental Study on the Reduction of Vibration of Gear Trains Due to a One-Way Clutch. Transactions of the Korean Society of Mechanical Engineers, A 35(11), 2011, DOI: 10.3795/KSME-A.2011.35.11.1477.
- Derzhansky V.B., Cherepanov S.V., Volkov A.A.: Method of studying the dynamics of the controlled mechanical continuously variable transmission with an elastic element and one-way clutch. IOP Conference Series Materials Science and Engineering, December 2020, DOI: 10.1088/1757-899X/971/5/052099.
- Gębura A.: Metoda modulacji częstotliwości napięcia prądnic pokładowych w diagnozowaniu zespołów napędowych. Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa 2010.
- 8. Gębura A.: Diagnosis of aircraft power transmission tracks based on the analysis of generator's frequency. Journal of Technical Physics, XLIII.1, 2002.
- 9. Gębura i in.: Diagnozowanie zespołów napędowych śmigłowców metodą FAM-C. Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa 2021.
- 10. Karan A. Dutt, Soni S.B., Patel D.V.: Hertzian Contact Stress Analysis in Roller Power Transmission One-Way Clutch by Using Finite Element Analysis. In book:

Advanced Engineering Optimization Through Intelligent Techniques, 2020, DOI: 10.1007/978-981-13-8196-6_54.

- 11. Kremer J.M.: Verification of the One-Way Clutch Race Stress Equation. Conference: International Congress & Exposition. February 1996. DOI: 10.4271/960723.
- 12. Runde J.K., Kluemper K.L.: System and method for controlling engagement of a lockup clutch in a torque converter. Patent: US8433488B2. April 2013.
- 13. Skoć A., Spałek J., Makusik S.: Podstawy konstrukcji maszyn. Zarys dynamiki i tribologii, elementy podatne, wały i osie maszynowe, łożyska ślizgowe i toczne, sprzęgła i hamulce. WNT, Warszawa 2008.
- 14. Witoś M.: Zwiększenie żywotności silników turbinowych poprzez aktywne diagnozowanie i sterowanie. Prace Naukowe Instytutu Technicznego Wojsk Lotniczych, nr 29, 2011.
- 15. Yang Y., Huang X. D., Zhao K. G., Li G., Wei J. J.: Impact of engagement of oneway clutch on shift characteristics of transmission. Apr 2016.