PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Subatmospheric pool boiling of water at very low liquid levels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses how the vapour bubbles growing during boiling under the near-triple point pressure influence the heat transfer coefficient when the refrigerant level is lower than the bubble departure diameter. The experiments were carried out for liquid levels of 0.57 to 1.89 cm, saturated pressure range between 0.9 and 4 kPa (saturation temperatures between 5.5 and 29◦C). Boiling occurred on a plain surface with wall heat flux densities between 0.43 and 5.93 Wcm−2. We determined boiling curves for the low-pressure process and analyzed the changes in wall superheat for different filling levels. The experimentally obtained heat transfer coefficient (HTC) was compared with the theoretical values produced by the most popular mathematical expressions used at higher pressures. We also prepared the boiling map, where we specified two boiling regimes: the regime of convection or small popping bubbles and the regime of isolated bubbles. The results indicate that the level of liquid can be neglected within the heat flux range analyzed in this study. The main mechanism of heat transfer under measured conditions is heat convection and conduction, rather than evaporation. The experimentally determined difference between the heat transfer coefficients for different levels of liquid is under 100 Wm−2K−1 (for the same heat flux and pressure at the wall).
Rocznik
Strony
447--461
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Wroclaw University of Science and Technology, Department of Thermal Sciences, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Department of Thermal Sciences, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Department of Thermal Sciences, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Department of Thermal Sciences, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Sikora M., Bohdal T.: New environmentally friendly low-pressurere refrigerants mini-channel. Arch. Thermodyn. 44(2023), 1, 89–104.
  • [2] Sène P., Giraud F., Sow M.L., Tréméac B.: Heat transfer coefficient correlations of water subatmospheric vaporization in a channel of a smooth plate heat exchanger, based on Vaschy-Buckingham theorem. Appl. Therm. Eng. 213 (2022), 1–17.
  • [3] Schnabel L., Scherr C., Webe, C.: Water as refrigerant- experimental evaluation of boiling characteristics at low temperatures and pressures. In: Proc.VII Minsk Int. Sem. Heat Pipes, Heat Pumps, Refrigerators, Power Sources, Minsk 2008, 322–330.
  • [4] Schultz K.: Configured Surface Tubes for Evaporation of Water. In: Proc. Int. Sorption Heat Pump Conf. Broomfield, 2005, 271–279.
  • [5] Herold K.E., Radermacher R., Klein S.A.: Absorption Chillers and Heat Pumps. CRC, Boca Raton 1996.
  • [6] Michaie S., Rullière R., Bonjour J.: Towards a more generalized understanding of pool boiling at low pressure: Bubble dynamics for two fluids in states of thermodynamic similarity. Exp. Therm. Fluid. Sci. 101(2019), 217–230.
  • [7] Wojtasik K., Rullière R., Krolicki Z., Zajaczkowski B., Bonjour J.: Subcooled boiling regime map for water at low saturation temperature and subatmospheric pressure. Exp. Therm. Fluid. Sci. 118(2020), 1–11.
  • [8] Giraud F., Rullière R., Toublanc C., Clausse M., Bonjour J.: Experimental evidence of a new regime for boiling of water at subatmospheric pressure. Exp. Therm. Fluid. Sci. 60(2015), 45–53.
  • [9] Hałon T., Zajączkowski B., Królicki Z., Wojtasik K.: Calculation and experimental verification of heat transfer coefficient for low pressure methanol evaporator. In: Proc. 24th Int. Cong. of Refrigeration, Yokohama, August 16-22, 2015, 1–8.
  • [10] Zajaczkowski B., Halon T., Krolicki Z.: Experimental verification of heat transfer coefficient for nucleate boiling at sub-atmospheric pressure and small heat fluxes. Heat Mass Transfer 52(2016), 205215.
  • [11] Bell I.H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53(2014), 6, 2498–2508.
  • [12] Thome J.R.: Boiling. In: Heat Transfer Handbook Handbook (A. Bejan, A.D. Kraus, Eds.), Wiley Hoboken 2003, 635–717.
  • [13] Giraud F., Rullière R., Toublanc C., Clausse M., Bonjour J.: Preliminary experimental investigation on water boiling phenomena in a liquid layer at subatmospheric pressure. In: Proc. 24th Int. Cong. of Refrigeration (ICR 2015), Yokohama, 2015.
  • [14] Shen B., Mine T., Iwata N., Hidaka S., Takahashi K., Takata Y.: Deterioration of boiling heat transfer on biphilic surfaces under very low pressures. Exp. Therm. Fluid Sci. 113(2020), 110026.
  • [15] Zimmermann M., Heinz M., Sielaff A., Gambaryan-Roisman T., Stephan P.: Influence of system pressure on pool boiling regimes on a microstructured surface compared to a smooth surface. Exp Heat Transfer 33(2019), 4, 318–334.
  • [16] Tang J., Zhu G., Sun L.: Microbubble emission boiling in subcooled pool boiling and the role of Marangoni convection in its formation. Exp. Therm. Fluid Sci. 50(2013), 97–106.
  • [17] Chang S., Lo D., Chiang K., Lin C.: Sub-atmospheric boiling heat transfer and thermal performance of two-phase loop thermosyphon. Exp. Therm. Fluid Sci. 39(2012), 134–147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae8f639f-4cfb-4537-9327-b72e1ebdc7af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.