PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Verification of Standard Recommendations for Estimating the Load-carrying Capacity of Undercut Anchors in Rock Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recommendations put forward in the International Standards for anchorage in concrete concerning the assessment of the load-carrying capacity of anchors (the pull-out force) embedded in natural rock material were verified. Regarding the predicted extent of surface failure we have shown, in earlier studies, substantial discrepancies between the strength test results for anchorages in the rock mass and the established standard recommendations for anchorages in concrete. As regards the industrial practice and the goals of the reported project, simplified calculation procedures that will facilitate the selection of optimal configurations for the layout of anchor holes, while being computationally effective and applicable under the industry-specific conditions are sought.
Twórcy
autor
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-100 Gliwice, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-100 Gliwice, Poland
Bibliografia
  • 1. Marcon M, Ninčević K, Boumakis I, Czernuschka L-M, Wan-Wendner R. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load. Materials 2018;11:711. https://doi.org/10.3390/ma11050711.
  • 2. Gontarz J, Podgórski J, Jonak J, Kalita M, Siegmund M. Comparison Between Numerical Analysis and Actual Results for a Pull-Out Test 2019. https://doi. org/10.24423/EngTrans.1005.20190815.
  • 3. Jonak J, Siegmund M. FEM 3D analysis of rock cone failure range during pull-out of undercut anchors. IOP Conference Series: Materials Science and Engineering 2019;710:012046. https://doi. org/10.1088/1757-899X/710/1/012046.
  • 4. Jonak J, Siegmund M, Karpiński R, Wójcik A. Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials 2020;13:1332. https://doi. org/10.3390/ma13061332.
  • 5. Siegmund M, Jonak J. Analysis of the process of loosening the rocks with different strength properties using the undercutting bolts. IOP Conference Series: Materials Science and Engineering 2019;679:012014. https://doi.org/10.1088/1757899X/679/1/012014.
  • 6. Jonak J, Karpiński R, Siegmund M, Wójcik A, Jonak K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials 2020;13:4657. https:// doi.org/10.3390/ma13204657.
  • 7. Yang K-H, Ashour AF. Mechanism analysis for concrete breakout capacity of single anchors in tension 2008.
  • 8. Anderson N.S: ICH Anchorage to Concrete Seminar. ACI 355.4-11, Qualification of Post-installed Adhesive Anchors in Concrete and Commentary. Seminar Santiago, Chile. 2015.
  • 9. Shaikh AF and Yi, W. In-Place Strength of Welded Headed Studs. 318Reference 2011;D.
  • 10. Eligehausen R, Mallée R, Silva JF. Anchorage in concrete construction. Berlin: Ernst & Sohn; 2006.
  • 11. Fuchs W, Eligehausen R, Breen JE. Concrete Capacity Design (CCD) Approach for Fastening to Concrete. ACI STRUCTURAL JOURNAL 1995;92:73.
  • 12. AEFAC STANDARD Part I. Design of post-installed and cast-in fastenings to concrete. Australian Engineered Fasteners and Anchors Council. AEFAC Standard – Part 1: public consultation draft 15/4/2015 n.d.
  • 13. ETAG 001, Guideline for European technical approval of metal anchors for use in concrete. European Organisation for Technical Approvals, Brussels 1997.
  • 14. Wyllie DC. Foundations on rock. 2nd ed. London ; New York: E & FN Spon; 1999.
  • 15. Panton B. Numerical modelling of rock anchor pullout and the influence of discrete fracture networks on the capacity of foundation tiedown anchors 2016. https://doi.org/10.14288/1.0228651.
  • 16. Brincker R, Ulfkjær JP, Adamsen P, Langvad L, Toft R. Analytical model for hook anchor pullout n.d.:10.
  • 17. Eligehausen R, Sawade G. A fracture mechanics based description of the pull-out behavior of headed studs embedded in concrete 1989. https://doi. org/10.18419/OPUS-7930.
  • 18. Ljungberg J. Pullout test of rock bolts at the Lima Hydropower stationAssessment of th test method n.d.:58.
  • 19. Asmus J, Eligehausen R. Design Method for Splitting Failure Mode of Fastenings. 2001.
  • 20. Asmus J. Bemessung von zugbeanspruchten Befestigungen bei der Versagensart Spalten des Betons. Stuttgart: IWB; 1999.
  • 21. Ballarini R, Yueyue X. Fracture Mechanics Model of Anchor Group Breakout. Journal of Engineering Mechanics 2017;143:04016125. https://doi. org/10.1061/(ASCE)EM.1943-7889.0001200.
  • 22. Ballarini R, Keer LM, Shah SP. An analytical model for the pull-out of rigid anchors. International Journal of Fracture 33:75-94 1987:20.
  • 23. Carpinteri A. Application of fracture mechanics to concrete structures. Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, ASCE, VoI108, NoST4, 1982.
  • 24. Karihaloo BL. Pull-out of axisymmetric headed anchors. Materials and Structures 1996;29:152–7. https://doi.org/10.1007/BF02486160.
  • 25. Hirabayashi M, Suzuki T, Kobayashi K. Basic Study on Pullout Resistance Mechanism of Tapertipped Post-installed Anchors. JR EAST Technical Review-No26 n.d.:6.
  • 26. Momose M, Maruyama K, Shimizu K. Load carrying mechanism of anchor bolt. IABSE 1991. https://doi.org/10.5169/seals-47712.
  • 27. Li L. Load bearing capacity of torque-controlled expansion anchors n.d.:8.
  • 28. Zaidir, MARUYAMA K, SHIMOMURA T. Crack Growth Mechanism and Fatigue Strength of Concrete in Anchor System : Annual Papers on Concrete Engineering 1997;19:135–40.
  • 29. Zhao G. Tragverhalten von randfernen kopfbolzenverankerungen bei betonbruch. Deutscher Ausschuss Fuer Stahlbeton 1995.
  • 30. Vogel A, Ballarini R. Ultimate Load Capacities of Plane and Axisymmetric Headed Anchors. Journal of Engineering Mechanics 1999;125:1276–9. https://doi. org/10.1061/(ASCE)0733-9399(1999)125:11(1276).
  • 31. Piccinin R, Ballarini R, Cattaneo S. Pullout Capacity of Headed Anchors in Prestressed Concrete. Journal of Engineering Mechanics 2012;138:877–87. https:// doi.org/10.1061/(ASCE)EM.1943-7889.0000395.
  • 32. Camposinhos RS. Undercut anchorage in dimension stone cladding. Proceedings of the Institution of Civil Engineers Construction Materials 2013;166:158– 74. https://doi.org/10.1680/coma.11.00050.
  • 33. Barenblatt GI. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, vol. 7, Elsevier; 1962, p. 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2.
  • 34. Nilforoush R, Nilsson M, Elfgren L, Ožbolt J, Hofmann J, Eligehausen R. Tensile Capacity of Anchor Bolts in Uncracked Concrete: Influence of Member Thickness and Anchor’s Head Size. ACI Structural Journal 2017;114. https://doi. org/10.14359/51689503.
  • 35. ACI Committee 318, American Concrete Institute (ACI). Building code requirements for structural concrete (ACI 318-14): an ACI standard and commentary on building code requerements for structural concrete (ACI 318R-14) : an ACI report. Farmington Hills, Michigan: American Concrete Institute, ACI; 2014.
  • 36. ACI Committee 349. Code requirements for nuclear safety-related concrete structures: (ACI 349-06) and commentary, an ACI standard. Farmington Hills, Mich.: American Concrete Institute; 2006.
  • 37. ACI Committee 349, “Design Guide to ACI 34985”, American Concrete Institute, Farmington Hills, MI, 1988.
  • 38. ACI Committee 349, “Code Requirements for Nuclear Safety Related Structures (ACI 349-01)”, American Concrete Institute, Farmington Hills, MI, 134 pp. 2001.
  • 39. Pietruszczak S, Lydzba D, Shao JF. Modelling of inherent anisotropy in sedimentary rocks. International Journal of Solids and Structures 2002;39:637–48. https://doi.org/10.1016/S00207683(01)00110-X.
  • 40. Podgórski J, Jonak J. Numerical tests of the influence of the orientation of stratification on the process of cutting of rocks. Mechanics and Control 2010;29.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae8a2b71-a03e-4b8b-b106-f5fc498f71bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.