PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waste plastic oil as an alternative fuel: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, with the high population density of the world, the energy demand is increasing continuously. Global dependency on fossil fuels is very strong and there is a compelling need to reduce our energy consumption in order to offset greenhouse gas emissions. Due to regularly increasing prices of fossil fuels alternative fuels are needed to fulfill the requirements of developing countries like India. Plastics in today's world have become crucial. They are excessively used in industry, as well as in households and other fields due to their lightweight, durability, and design flexibility. Plastic demand is growing day by day, which now poses a huge environmental threat. The current study summarizes the use of WPO (waste plastic oil) in the diesel engine and also concludes the combustion, performance, and emission parameters. After an exhaustive literature search, some interesting results have been found. The study reveals that when using WPO as an alternative source in a diesel engine, the combustion, performance, and emissions are similar to those using conventional diesel fuel. An enhanced BTE (brake thermal efficiency) and reduced emissions of unburned hydrocarbons (UBHC) and carbon monoxide (CO) are reported.
Słowa kluczowe
Rocznik
Strony
87--97
Opis fizyczny
Bibliogr. 78 poz., rys.
Twórcy
autor
  • Indian Institute of Technology (ISM), Dhanbad, 826004, India; G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
  • G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
autor
  • G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
autor
  • Delhi Technological University, Delhi, 110042, India
Bibliografia
  • [1] Ellen MacArthur Foundation. (2016). The New Plastics Economy. https://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf [accessed 8 Jan. 2023].
  • [2] Damodharan, D., Sathiyagnanam, A.P., Rana, D., Saravanan, S., Rajesh Kumar, B., & Sethuramasamyraja, B. (2018). Effective utilization of waste plastic oil in a direct injection diesel engine using high carbon alcohols as oxygenated additives for cleaner emissions. Energy Conversion and Management, 166, 81-97. doi: 10.1016/j.enconman.2018.04.006
  • [3] Central Pollution Control Board. (2019). Annual Report 2019-20. https://cpcb.nic.in/uploads/plasticwaste/Annual_Report_2019-20_PWM.pdf [accessed 8 Jan. 2023].
  • [4] Statista. (2022). (Statistical Report). https://www.statista.com/statistics/report-content/statistic/1168513 [accessed 8 Jan. 2023].
  • [5] India Today. (2022, October 27). Why plastic pollution continues unchecked in India. https://www.indiatoday.in/environment/story/why-plastic-pollution-continues-unchecked-in-india2289887-2022-10-27 [accessed 8 Jan. 2023].
  • [6] Ahamed, A., Veksha, A., Yin, K., Weerachanchai, P., Giannis, A., & Lisak, G. (2020). Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. Journal of Hazardous Materials, 390, 121449. doi: 10.1016/j.jhazmat.2019.121449
  • [7] Baena-González, J., Santamaria-Echart, A., Aguirre, J.L., & González, S. (2020). Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil. Waste Management, 118, 139-149. doi: 10.1016/j.wasman.2020.08.035
  • [8] Schwarz, A.E., Ligthart, T.N., Boukris, E., & van Harmelen, T. (2019). Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Marine Pollution Bulletin, 143, 92-100. doi: 10.1016/j.marpolbul.2019.04.029
  • [9] Kibria, M.G., Masuk, N.I., Safayet, R., Nguyen, H.C., & Mourshed, M. (2023). Plastic waste: Challenges and opportunities to mitigate pollution and effective management. International Journal of Environmental Research, 17, 20. doi: 10.1007/s41742-023-00507-z
  • [10] NetPLASMAK. Recycling Machinery (2023). Washing and separation systems. https://www.netplasmak.com/washing-and-separation-systems [accessed 12 Jan. 2023].
  • [11] Mohan, D., Pittman, C.U., & Steele, P.H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20, 848-889. doi: 10.1021/ef0502397
  • [12] Tripathi, M., Sahu, J.N., & Ganesan, P. (2016). Effect of process parameters on production of bio-char from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467-481. doi: 10.1016/j.rser.2015.10.122
  • [13] Anthony, J., Nikhil Gopal, D., Gowda, M., & Sharma, A. (2019). A review paper on extraction of fuel from waste plastic by pyrolysis. International Journal of Research and Analytical Reviews, 6(1), 473-475. doi: 10.1016/j.rser.2023.113799
  • [14] Cross, J.P.M., Kumar, R.P., Rajan, R.P., Ali, M.J., & Joshua, R.C. (2018). Design and fabrication of extraction of fuel from waste plastic using pyrolysis. International Journal of Advance Research and Innovative Ideas in Education, 4(2), 1795-1799.
  • [15] Mathur, K., & Shubham, C. (2016). Extraction of pyrolysis oil from waste plastics. International Research Journal of Engineering and Technology, 3(4), 1649-1652.
  • [16] Bouaphengphanh, N., Savengsuksa, V., & Phonepaseuth, P. (2017). Oil extraction from plastic waste using pyrolysis process. International Conference on “The Conservation and Development”, 23 November 2017 at Souphanouvong University, Luang Prabang, Lao PDR. doi: 10.13140/RG.2.2.12455.57764
  • [17] Desai, K.S., Shirodkar, R.R., Yerunkar, A.U. & Sinha, K. (2016). Crude oil extraction from waste plastic. International Journal of Scientific Research, 5(4), 625-627.
  • [18] Chavan, K.M. (2021). Extraction of fuel from plastic waste by pyrolysis treatment. International Journal of Research in Engineering and Science, 9(7), 4-10.
  • [19] Santaweesuk, C., & Janyalertadun, A. (2017). The production of fuel oil by conventional slow pyrolysis using plastic waste from a municipal landfill. International Journal of Environmental Science and Development, 8(3), 168173. doi: 10.18178/ijesd.2017.8.3.941
  • [20] Patni, N., Shah, P., Agarwal, S., & Singhal, P. (2013). Alternate strategies for conversion of waste plastic to fuels. International Scholarly Research Notices, 902053. doi: 10.1155/2013/902053.
  • [21] Jha, K.K., & Kannan, M.T.K. (2020). Alternate fuel preparation in low cost from waste plastic. Materials Today: Proceedings, 37 Part 2, 3656-3657. doi: 10.1016/j.matpr.2020.09.802
  • [22] Srinivas, K.R., Kumawat, N.R., Gogoi, P.J., & Yadav, R.P.S. (2022). Extraction of bio-diesel from waste plastic through pyrolysis process. International Journal of Engineering Research & Technology, 10(10), 66-70.
  • [23] Fivga, A., & Dimitriou, I. (2018). Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy, 149, 865-874. doi: 10.1016/j.energy.2018.02.094
  • [24] Fulgencio-Medrano, L., García-Fernández, S., Asueta, A., Lopez-Urionabarrenechea, A., Perez-Martinez, B.B., & Arandes, J.M. (2022). Oil production by pyrolysis of real plastic waste. Polymers, 14(3), 553. doi: 10.3390/polym14030553
  • [25] Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., & Aruoa, M.K. (2018). Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conference Series: Materials Science and Engineering, 334, 01200. doi: 10.1088/1757-899X/334/1/012001
  • [26] Chiwara, B., Makhura, E., & Danha, G. (2017). Pyrolysis of plastic waste into fuel and other products. Sixteenth International Waste Management and Landfill Symposium, 2 - 6 October 2017, S. Margherita di Pula, Cagliari, Italy.
  • [27] Tahir, R., & Altway, A. (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports, 5, 70-77. doi:10.1016/j.egyr.2018.11.004
  • [28] Walendziewski, J. (2002). Engine fuel derived from waste plastics by thermal treatment. Fuel, 473-481. doi: 10.1016/S0016-2361(01)00118-1
  • [29] Kumar, S.L., Radjarejesri, S., & Raj Jawahar, R. (2020). Characterization of waste plastic oil as biodiesel in IC engines. Materials Today: Proceedings, 33(1), 833-838. doi: 10.1016/j.matpr.2020.06.272
  • [30] Sharma, B.K., Moser, B.R., Vermillion, K.E., Doll, K.M., & Rajagopalan, N. (2014). Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 122, 79-90. https://doi.org/10.1016/j.fuproc.2014.01.019.
  • [31] Adhikari, S., Nam, H., & Chakraborty, J.P. (2018). Chapt. 8 - Conversion of Solid Wastes to Fuels and Chemicals Through Pyrolysis, In: Waste Biorefinery (pp. 239-263). Elsevier. doi:10.1016/B978-0-444-63992-9.00008-2
  • [32] Panda, A.K., Singh, R.K., & Mishra, D.K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value-added products - A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233248. doi: 10.1016/j.rser.2009.07.005
  • [33] Sheng, C., & Azevedo, J.L.T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28(5), 499507. doi: 10.1016/j.biombioe.2004.11.008
  • [34] Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., et al. (2014). Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia, 47, 180-188. doi: 10.1016/j.egypro.2014.01.212
  • [35] Khan, M.Z.H., Sultana, M., & Al-Mamun, M.R. (2016). Pyrolytic waste plastic oil and its diesel blend: fuel characterization. Journal of Environmental and Public Health, 7869080. doi:10.1155/2016/7869080
  • [36] Mani, M., Nagarajan, G., & Sampath, S. (2011). Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine. Energy, 36(1), 212-219. doi:10.1016/j.energy.2010.10.049
  • [37] Janarthanan, K., & Sivanandi, P. (2022). Extraction and characterization of waste plastic pyrolysis oil for diesel engines. Journal of Cleaner Production, 366, 132924. doi: 10.1016/j.jclepro.2022.132924
  • [38] Churkunti, P.R., Mattson, J., Depcik, C., & Devlin, G. (2016). Combustion analysis of pyrolysis end of life plastic fuel blended with ultra-low sulfur diesel. Fuel Processing Technology, 142, 212-218. doi: 10.1016/j.fuproc.2015.10.021
  • [39] Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P., & Tigga, V.P. (2020). Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel, 262, 116539. doi: 10.1016/j.fuel.2019.116539
  • [40] Maithomklang, S., Wathakit, K., Sukjit, E., Sawatmongkhon, B., & Srisertpol, J. (2022). Utilizing waste plastic bottle-based pyrolysis oil as an alternative fuel. ACS Omega, 7(24), 20542-20555. doi: 10.1021/acsomega.1c07345.
  • [41] Peng, Y., Wang, Y., Ke, L., Dai, L., Wu, Q., Cobb, K., et al. (2022). A review on catalytic pyrolysis of plastic wastes to highvalue products. Energy Conversion and Management, 254,115243. doi: 10.1016/j.enconman.2022.115243
  • [42] Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., et al. (2017). Pyrolysis: A sustainable way to generate energy from waste. In Pyrolysis, InTech Open. doi:10.5772/intechopen.69036
  • [43] Naima, K., & Liazid, A. (2013). Waste oils as an alternative fuel for diesel engine. Journal of Petroleum Technology and Alternative Fuels, 4(3), 30-43. doi: 10.5897/JPTAF12.026
  • [44] Wongkhorsub, C., & Chindaprasert, N. (2013). A comparison of the use of pyrolysis oils in diesel engine. Energy and Power Engineering, 5(4B), 350-355. doi: 10.4236/epe.2013.54B068.
  • [45] Harshal, R.P., & Shailendra, M.L. (2013). Waste plastic pyrolysis oil as an alternative fuel for CI engine - A review. Research Journal of Engineering Sciences, 2(2), 26-30.
  • [46] Ghorpade, S.S., Patil, R.R., Kumar, V.S., & Harish, V.R. (2017). Extraction of plastic oil and experimental evaluation of diesel engine with blends of diesel and plastic pyrolysis oil. TroIndia, 4(6).34-37.
  • [47] Anup, T.J., & Watwe, V. (2014). Waste plastic pyrolysis oil as alternative for SI and CI engines. International Journal of Innovative Research in Science, Engineering and Technology, 3(7).14680-14687.
  • [48] Towijaya, K., Anam, K., & Lestari, W.D. (2022). Identification of cetane number in solar fuel from pyrolysis of plastic waste. Biomedical and Mechanical Engineering Journal, 2(1), 6-10. doi: 10.33005/biomej.v2i1.47
  • [49] Saleem, R., Naz, M.Y., Shukrullah, S., & Shoukat, B. (2022). Microwave pyrolysis of plastic waste materials into hydrogen and carbon. In Energy and Environment (pp. 157-167). doi:10.1007/978-981-19-6688-0_10
  • [50] Bockhorn, H., Hornung, A., Hornung, A, & Schawaller, D. (1999). Kinetic study on thermal degradation of polypropylene and polyethylene. Journal of Analytical and Applied Pyrolysis, 48(2), 93-109. doi: 10.1016/S0165-2370(98)00131-4
  • [51] Nakhate, A.S., & Saharabuddhe, O. (2017). Grade analysis of pyrolysis oil by step distillation. International Journal of Mechanical and Production Engineering, 5(6), 120-124.
  • [52] Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M., et al. (2019). Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research, 7, 27. doi: 10.3389/fenrg.2019.00027
  • [53] Shah, H.H., Amin, M., Iqbal, A., Nadeem, I., Kalin, M., Soomar, A.M., et al. (2022). A review on gasification and pyrolysis of waste plastics. Frontiers in Chemistry, 10, 960894. doi:10.3389/fchem.2022.960894
  • [54] Wongkhorsub, C., & Chindaprasert, N. (2013). A comparison of the use of pyrolysis oils in diesel engine. Energy and Power Engineering, 5 (4B), 350355. doi: 10.4236/epe.2013.54B068
  • [55] Miandad, R., Barakat, M.A, Aburiazaiza, A.S., Rehan, M., & Nizami, A.S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838, doi: 10.1016/j.psep.2016.06.022
  • [56] Al-Haj Ibrahim, H. (2020). Introductory chapter: pyrolysis. In Recent Advances in Pyrolysis, InTech Open. doi:10.5772/intechopen.90366
  • [57] Fahmy, T.Y.A., Fahmy, Y., Mobarak, F., El-Sakhawy, M., & Abou-Zeid, R.E. (2020). Biomass pyrolysis: Past, present, and the future. Environment, Development and Sustainability, 22,17-32. doi: 10.1007/s10668-018-0200-5
  • [58] Varma, A.K., Shankar, R., & Mondal, P. (2018). A review on pyrolysis of biomass and the impacts of operating conditions on product yield, quality, and upgradation. In Recent Advancements in Biofuels and Bioenergy Utilization (pp. 227-259). doi:10.1007/978-981-13-1307-3_10
  • [59] Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39, 109-143. doi: 10.1016/j.jechem.2019.01.024
  • [60] Yansaneh, O.Y., & Zein, S.H. (2022). Recent advances on waste plastic thermal Pyrolysis: A critical overview. Processes, 10(2),332. doi: 10.3390/pr10020332
  • [61] Bridgwater, T., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479-1493. doi: 10.1016/S0146-6380(99)00120-5
  • [62] Li, J., Li, N., & Qiao, Y. (2020). Biomass pyrolysis liquefaction technique: state of research and development trends. IOP Conference Series Earth and Environmental Science, 558, 022016. doi:10.1088/1755-1315/558/2/022016
  • [63] Pandey, U., Stormyr, J.A., Hassani, A., Jaiswal, R., Haugen, H.H., & Moldestad, B.M. E. (2020). Pyrolysis of plastic waste to environmentally friendly products. In Energy Production and Management in the 21st Century IV (pp. 61-74), WIT Press. doi:10.2495/EPM200071
  • [64] Uzochukwu Eze, W., Umunakwe, R., Obasi, H.C., Ugbaja, M.I., Uche, C.C., & Madufor, I.C. (2021). Plastics waste management: A review of pyrolysis technology. Clean Technologies and Recycling, 1(1), 50-69. doi: 10.3934/ctr.2021003
  • [65] Miandad, R., Barakat, M.A., Aburizaiza, A., Rehan, M. & Nizami, A.S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838. doi: 10.1016/j.psep.2016.06.022
  • [66] Qureshi, M. S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., et al. (2020). Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152, 104804. doi: 10.1016/j.jaap.2020.104804
  • [67] Papuga, S., & Djurdjevic, M. (2022). Catalytic pyrolysis of plastic waste and molecular symmetry effects: A review. Symmetry,15(1), 38. doi: 10.3390/sym15010038
  • [68] Xayachak, T., Haque, N., Parthasarathy, R., King, S., Emami, N., Lau, D., et al. (2022). Pyrolysis for plastic waste management: An engineering perspective. Journal of Environmental Chemical Engineering, 10(6), 108865. doi: 10.1016/j.jece.2022.108865
  • [69] Sasikumar, C., Senthilkumar, C., Sarweswaran, R., & Kannan, R. (2022). Pyrolysis of plastic waste for a better environmental system. Materials Today: Proceedings, 64(1). doi: 10.1016/j.matpr.2022.05.388
  • [70] Mohan, R.K., Sarojini, J., Rajak, U., Verma, T. N., & Ağbulut, Ü. (2023). Alternative fuel production from waste plastics and their usability in light-duty diesel engine: Combustion, energy, and environmental analysis. Energy, 265, 126140. doi: 10.1016/j.energy.2022.126140
  • [71] Januszewicz, K., Hunicz, J., Kazimierski, P., Rybak, A., Suchocki, T., Duda, K., et al. (2023). An experimental assessment on a diesel engine powered by blends of waste-plastic-derived pyrolysis oil with diesel. Energy, 281, 128330. doi: 10.1016/j.energy.2023.128330
  • [72] Sekar, M., Praveenkumar, T. R., Dhinakaran, V., Gunasekar, P., & Pugazhendhi, A. (2021). Combustion and emission characteristics of diesel engine fueled with nanocatalyst and pyrolysis oil produced from the solid plastic waste using screw reactor. Journal of Cleaner Production, 318, 128551. doi: 10.1016/j.jclepro.2021.128551
  • [73] Muthukumar, K., & Kasiraman, G. (2023). Downcycling of onetime used plastic waste to DICI engine combustion energy through pyrolysis with less NOx emission. Process Safety and Environmental Protection, 175, 744-752. doi: 10.1016/ j.psep.2023.05.097
  • [74] Jena, P., Raj, R., Tirkey, J.V., & Kumar, A. (2023). Experimental analysis and optimization of CI engine performance using waste plastic oil and diesel fuel blends. Journal of the Energy Institute,109, 101286. doi: 10.1016/j.joei.2023.101286
  • [75] Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P., & Tigga, V.P. (2020). Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel, 262, 116539. doi: 10.1016/j.fuel.2019.116539
  • [76] Mangesh, V.L., Padmanabhan, S., Tamizhdurai, P., & Ramesh, A. (2020). Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. Journal of Cleaner Production, 246, 119066. doi:10.1016/j.jclepro.2019.119066
  • [77] Mani, M., & Nagarajan, G. (2009). Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil. Energy, 34(10),1617-1623. https://doi.org/10.1016/j.energy.2009.07.010
  • [78] Kalargaris, I., Tian, G., & Gu, S. (2017). Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Processing Technology, 157, 108-115. doi:10.1016/j.fuproc.2016.11.016
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae89d1ac-2c89-4afe-9a7d-217441c3a2fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.