PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Co(II) ions adsorption in the hydroxyapatite/aqueous NaClO4 solution system on particles electrokinetics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of the kinetics and statics of cobalt adsorption at the hydroxyapatite/electrolyte interface using radioactive isotope 60Co was conducted. The course of adsorption kinetics indicates that at the beginning adsorption proceeds quickly and then slowly. Such adsorption kinetics is best described by a multiexpotential equation. The analysis of cobalt adsorption as a function of pH and the results of H+ ions desorption/adsorption confirmed that cobalt adsorption proceeds due to ion exchange with calcium ions in the crystal lattice and hydrogen ions in the surface groups of hydroxyapatite. Cobalt ions adsorption results in the increase of the electrokinetic potential but for the solution of the initial concentration of 0.001 mol/dm3 at pH = 8.17 a reversal of the charge due to overloading of the compact layer (edl) is observed.
Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Maria Curie Skłodowska University, Pl. M. Curie Skłodowskiej 3, 20-031 Lublin, Poland
autor
  • Maria Curie Skłodowska University, Pl. M. Curie Skłodowskiej 3, 20-031 Lublin, Poland
Bibliografia
  • BAILLIEZ, S., NZIHOU, A., BECHE, E., FLAMANT, G., 2004. Removal of Lead (Pb M) by hydroxyapatite sorbent.Process Safety Environ. Prot., 82(B2), 175–180.
  • BIESINGER, M.C., PAYNEC, B.P., GROSVENORD, A.P., LEO W.M., LAU, L.WM., GERSON, A.R., SMART, R.S.C., 2011. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni.Appl. Sur. Sci.257, 2717-2730.
  • CROSMANA, A., GELBARD, G., PONCELET, G., PARVULESCU, V.I., 2004. Epoxidation of cyclohexene and indene with hydrogen peroxide in the presence of WO5onto hydroxyapatite as catalys.Appl. Catal. A: General 264, 23–32.
  • DERYLO-MARCZEWSKA, A., MARCZEWSKI, A.W., WINTER, SZ., STERNIK, D., 2010. Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyes–mesoporous carbons.Appl. Sur. Sci. 256, 5164–5170.
  • ELKABOUSS, K., KACIMI, M., ZIYAD, M., AMMAR, S., BOZON-VERDURAZ, F., 2004. Cobalt-exchanged hydroxyapatite catalysts: Magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrwogenations.J. Catalysis 226, 16–24.
  • GOMEZ DEL RIO, J.A., MORANDOA, P.J., CICERONE, D.S., 2004. Natural Materials for remediation of industrial effluents: Comparative study of the retention of Cd, Zn and Co by Calcite and Hydroxyapatite. Part I: Batch Experiments, J. Environ. Manage.71, 169–177.
  • HANDLEY-SIDHU, S., RENSHAW, J.C., MORIYAMA, S., STOLPE, B., MENNAN, C., BAGHERIAS, S., YONG, P., STAMBOULIS, A., PATERSON-BEEDLE, M., SASAKI, K., PATTRICK, R. A.D., LEAD, J. R., MACASKIE, L.E., 2011. Uptake of Sr2+and Co2+into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis.Environ. Sci. Technol. 45, 6985–6990.
  • HEA, M., SHIA, H., ZHAOA, X., YUA, Y., QU, B., 2013. Immobilization of Pb and Cd in contaminated soil using nanocrystallite hydroxyapatite Procedia Environ.Sci. 18, 657–665.
  • JANUSZ, W., SKWAREK, E., 2016. Study of sorption processes of strontium on the synthetic hydroxyapatite.Adsorption22,697–706.
  • JAWORSKI, J.W., CHO, S., KIM, Y., JUNG, J. H., JEON, H. S., MIN, B. K., KWON, K.Y., 2013. Hydroxyapatite supported cobalt catalysts for hydrogen generation.J. Colloid Interface Sci. 394, 401–408.
  • JIA M., HONG Y., DUAN S., LIU Y., YUAN B., JIANG F., 2013.The influence of transition metal ions on collagen mineralization.Mater. Sci. Eng. C 33, 2399–2406.
  • JONES, F.H., 2001. Teeth and bones: applications of surface science to dental materials and related biomaterials.Surf Sci. Rep. 42,75-205.
  • JUN, J. H., LIM, T. H., NAM, S.W., HONG, S.A., YOON, K.J., 2006. Mechanism of partial oxidation of methane over a nickel-calcium hydroxyapatite catalyst.Appl. Catal. A: General 312, 27–34.
  • KABATA-PENDIAS, A., PENDIAS, H., 1999. Biogeochemia pierwiastków śladowych.PWN, p.344.
  • KRAMER, E., ITZKOWITZ, E., WEI, M., 2014. Synthesis and characterization of cobalt-substituted hydroxyapatite powder.Ceramics International 40, 13471–13480.
  • KURKURA, M., BELL, L.C., POSNER, A.M., QUIRK, J.P., 1972. Radioisotope Determination of the Surface Concentration of Calcium and Phosphorous on Hydroxyapatite in Aqueous Solution.J. Phys. Chem. 76, 900-904.
  • LEYVA, A. G., MARRERO, J., SMICHOWSKI, P., CICERONE, D., 2001. Sorption of Antimony onto hydroxyapatite.Environ. Sci. Technol., 35, 3669-3675.
  • LIU, J., YE, X., WANG, H., ZHU, M., WANG, B., YAN, H., 2003. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method.Ceram. Int. 29,629–633.
  • MA, Q.Y., LOGAN, T.L., TRAINA, S. J., RYAN J. A., 1994. Effects of NO3-, CI-, F-, SO42-, and CO32-on Pb2+immobilization by hydroxyapatite.Environ. Sci. Technol., 28, 408-418.
  • MADHAVI, S., FERRARIS, C., WHITE, T.J., 2005. Synthesis and crystallization of macroporoushydroxyapatite.J. Solid State Chem. 178, 2838–2845.
  • MAHABOLE, M. P., MENE, R. U., KHAIRNAR, R. S., 2013. Gas sensing and dielectric studies on cobalt doped hydroxyapatite thick films.Adv. Mat. Lett., 4(1), 46-52.
  • MARCZEWSKI, A.W., 2007. Kinetics and equilibrium of adsorption of organic solutes on mesoporous carbons.Appl. Sur. Sci. 253, 5818–5826.
  • MARTEL, A.E., SMITH, R.M., 1989. Critical Stability Constants.Springer Sci nad Business Media Ltd. New York.
  • PAN, H.B., DARVELL, B.W., 2009. Calcium phosphate solubility: theneed for re-evaluation.Cryst. Growth Des., 9(2),639–645.
  • PAN, X., WANG, J., ZHANG, D., 2009. Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism.Desalination 249, 609–614.
  • RIAD, M., MIKHAIL, S., 2013. Zinc Incorporated Hydroxyapatite Catalysts: Preparation and Characterization.Energy Sources 35 (A), 445–454.
  • SCINDLER, P.W., 1981. Surface Complexation at Oxide-Water Interface. In Adsorption of Inorganics at Solid –Liqiud Interfaces.(M.A. Anderson and A.J. Rubin Eds.) Ann. Arbor. Sci., AnnArbor, pp1-50.
  • SIMONSEN, L. O., HARBAK, H., BENNEKOU, P., 2012. Cobalt metabolism and toxicology—A brief update.Sci. Total. Environ. 432, 210–215.
  • SKARTSILA, K., SPANOS, N., 2007. Surface characterization of hydroxyapatite: Potentiometrictitrations coupled with solubility measurements.J. Colloid Interface Sci. 308, 405–412.
  • STUMM, W., 1992. Chemistry of the Solid-Water Interface.p. 93. Wiley, New York.
  • VENUGOPAL, A., SCURRELL, M. S., 2003. Hydroxyapatite as a novel support for gold and ruthenium catalysts. Behaviour in the water gas shift reaction. Appl. Catal. A: General 245, 137–147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae88a10f-0e51-4349-ba19-de3f5c53e78b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.