PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of a near wall model to Navier-Stokes equations with nonlinear time-relaxation model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is difficult and essential to determine appropriate boundary conditions for the flow averages because they depend on the behavior of the unknown flow near the wall. Large-eddy simulation (LES) is one of the promising approaches. LES estimates local spatial averages ū of the velocity u of the fluid. The main problem is modeling near-wall turbulence in complex geometries. Inspired by the works of Navier and Maxwell, the boundary conditions are developed on the wall. In this study, the appropriate friction coefficient for 2-D laminar flows is computed, and existing boundary layer theories are used to improve numerical boundary conditions for flow averages. The slip with friction and penetration with resistance boundary conditions are considered. Numerical tests on two-dimensional channel flow across a step using this boundary condition on the top and bottom wall and the step are performed.
Rocznik
Strony
39--50
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla,Turkey
Bibliografia
  • [1] Berselli, L.C., Iliescu, T., & Layton, W.J. (2006). Mathematics of Large Eddy Simulation of Turbulent Flows. Berlin Heidelberg: Springer-Verlag.
  • [2] Deardoff, J.W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453-480.
  • [3] Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18, 376-404.
  • [4] Bose, S.T., & Moin, P. (2014). A dynamic slip boundary condition for wall-modeled large-eddy simulation. Physics of Fluids, 26, (015104).
  • [5] Bostrom, E. (2017). Boundary Conditions for Spectral Simulations of Atmospheric Boundary Layers. PhD thesis. Department of Mechanics, Stockholm: Royal Institute of Technology.
  • [6] Anum Shafiq, A.T., & Hammouch, Z. (2018). Impact of radiation in a stagnation point flow of walters B fluid towards a riga plate. Thermal Science and Engineering Progress, 6, 27-33.
  • [7] Cao, Y. (2021). Global classical solutions to the compressible navier-stokes equations with navier-type slip boundary condition in 2d bounded domains. arXiv:2102.10235v2, April.
  • [8] Winter, M.E. (2020). Weak Imposition of the General Navier Condition for Cut Finite Elements with Application to Wetting Processes, PhD thesis, Fakultat fur Maschinenwesen, Technischen Universitat Munchen.
  • [9] Fakhari, A. (2019). A new wall model for large eddy simulation of separated flows. Fluids, 4(197), DOI: 10.3390/fluids4040197.
  • [10] Posa, A., & Balaras, E. (2014). Model-based near-wall reconstructions for immersed-boundary methods. J. Theor. Comput. Fluid Dyn., 28, 473-483.
  • [11] Hill, G.R. (2010). Benchmark Testing the α-models of Turbulence. Master of Science, the Graduate School of Clemson University.
  • [12] Galdi G.P., & Layton, W.J. (2000). Approximation of the larger eddies in fluid motion II: A model for space filtered flow. Math. Models and Meth. In Appl. Science, 10(3), 343-350.
  • [13] Ilhan, O. (2018). Turbulansli Sinir Tabakasi icin Duvar Kenari Modeli ve Modelin Logaritmik Kanunla Testleri. PhD thesis. Mugla Sitki Kocman University, Institute of Science.
  • [14] John, V., Layton, W.J., & Sahin, N., (2004). Derivation and analysis of near wall models for channel and recirculating flows. Comput. Math. Appl., 28, 1135-1151.
  • [15] John, V. (2002). Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations – numerical tests and aspects of the implementation. J. Comp. Appl. Math., 147, 287-300.
  • [16] Sahin, N. (2003). Derivation, Analysis and Testing of New Near Wall Models for Large Eddy Simulation. PhD thesis. Department of Mathematics, Pittsburgh University.
  • [17] Isik, O.R., Yuksel, G., & Demir, B. (2018). Analysis of second order and unconditioanally stable for BDF2-AB2 method for the Navier-Stokes Equations with nonlinear time relaxation. Numerical Methods for Partial Differential Equations, 34(6), 2060-2078.
  • [18] Pope, S.B. (2000). Turbulent Flows. Cambridge University Press.
  • [19] Navier, C.L.M.H. (1823). Memoire sur les lois du movement des fluiales. Mem. Acad. Royal Society, 6, 389-440.
  • [20] Maxwell, J.C. (1879). On stresses in rarefied gases arising from inequalities of temperature. Royal Society Phil. Trans., 170, 249-256.
  • [21] Ilhan, O., & Sahin, N. (2022). Testing of logarithmic-law for the slip with friction boundary condition. International Journal of Nonlinear Sciences and Numerical Simulation, DOI: 10.1515/ijnsns-2021-0184.
  • [22] Hecht, F., Pironneau, O., & Ohtsuka K. (2022). Freefem++ manual, url=http://www.freefem.org.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae88471f-7df8-4364-bd3e-699b434ee61b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.