PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Capacitor Energy Variations in MMC Using Harmonics Injection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modular multilevel converter (MMC) is considered as a good technology for high-voltage direct current (HVDC) transmission systems. It can generate a good quality staircase output voltage waveform due to the cascaded connection of large number of identical sub-modules (SMs). Energy variations in SM capacitor lead to capacitor voltage fluctuations which affect the size and stability of MMC. Traditionally MMC arm voltages are controlled using direct modulation method. The closed loop and open loop compensated modulation methods are implemented to overcome the drawbacks created in direct modulation method. However, these methods rely on the accurate measurements or estimation of SM capacitor voltages. In this paper, capacitor energy variations in MMC based on direct modulation method under three different categories using proportional-resonant (PR) controllers are discussed as (a) pure sinusoidal arm current (b) sinusoidal arm current with addition of large 2nd harmonic (c) sinusoidal arm current with addition of 2nd +4th harmonics. Analytical and simulation results show reduction in capacitor energy variations in MMC while injecting harmonics in the arm currents using direct modulation method.
Słowa kluczowe
Wydawca
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Electrical and Computer Engineering Department, COMSATS University Islamabad, Pakistan
  • Electrical and Computer Engineering Department, COMSATS University Islamabad, Pakistan
  • Electrical Energy, Metals, Mechanical Constructions and Systems, Gent University, 9052 Gent, Belgium
  • Satellite Development Center CDS, P. O. B. 4065, 31000 Ibn Rochd USTO, Oran, Algeria
Bibliografia
  • Ahmed, N., Angquist, L., Norrga, S., Antonopoulos, A., Harnefors, L. and Nee, H. P. (2014). A computationally efficient continuous model for the modular multilevel converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2, pp. 1139–1148.
  • Angquist, L., Antonopoulos, A., Siemaszko, D., Ilves, K., Vasiladiotis, M. and Nee, H.-P. (2011). Open-loop control of modular multilevel converters using estimation of stored energy. IEEE Transactions on Industry Applications, 47(6), pp. 2516–2524.
  • Antonopoulos, A., Angquist, L. and Nee, H. P. (2009). On dynamics and voltage control of the modular multilevel converter. In: Proceeding of the 13th European Conference on Power Electronics and Applications, Barcelona, Spain, pp. 1–10.
  • Bergna, G., Berne, E., Egrot, P., Lefranc, P., Amir, A., Vannier, J. and Molinas, M. (2013). An energy-based controller for HVDC modular multi level converter in decoupled double synchronous reference frame for voltage oscillations reduction. IEEE Transactions on Industrial Electronics, 60, 2360–2371.
  • Debnath, S., Qin, J., Bahrani, B., Saeedifard, M. and Barbosa, P. (2015). Operation, control, and applications of the modular multilevel converter: A review. IEEE Transactions on Power Electronics, 30(1), pp. 37–53.
  • Ilves, K., Antonopoulos, A., Norrga, S. and Nee, H. (2012). Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters. IEEE Transactions on Power Electronics, 27(1), pp. 57–68.
  • Li, S., Wang, X., Yao, Z., Li, T. and Peng, Z (2015). Circulating current suppressing strategy for MMC-HVDC based on, on ideal proportional resonant controllers under unbalanced grid conditions. IEEE Transactions on Power Electronics, 30, pp. 387–397.
  • Li, X., Song, Q., Liu, W., Xu, S., Zhu, Z. and Li, X. (2006). Performance analysis and optimization of circulating current control for modular multilevel converter. IEEE Transactions on Industrial Electronics, 63(2), pp. 716–727.
  • Moon, J. W., Park, J.-W., Kang, D.-W. and Kim, J.-M. (2015). A control method of HVDC-modular multilevel converter based on arm current under the unbalanced voltage condition. IEEE Transactions on Power Delivery, 30(2), pp. 529–536.
  • Picas, R., Pou, J., Ceballos, S., Agelidis, V. G. and Saeedifard, M. (2012). Minimization of the capacitor voltage fluctuations of a modular multilevel converter by circulating current control. In: Proceedings of IEEE 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, pp. 4985–4991.
  • Pou, J., Ceballos, S., Konstantinou, G., Agelidis, V. G., Picas, R. and Zaragoza, J. (2015). Circulating current injection methods based on instantaneous information for the modular multilevel converter. IEEE Transactions on Industrial Electronics, 62(2), pp. 777–788.
  • Qin, J. and Saeedifard, M. (2012). Predictive control of a modular multilevel converter for a back-to-back HVDC System. IEEE Transactions on Power Delivery, 27(3), pp. 1538–1547.
  • Qingrui, T., Zheng, X. and Lie, X. (2011). Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE Transactions on Power Delivery, 26, pp. 2009–2017.
  • Rohner, S., Bernet, S., Hiller, M. and Sommer, R. (2010). Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Transactions on Industrial Electronics, 57(8), pp. 2633–2642.
  • Sun, J., Chen, B., Guo, S., Zha, X., Xiong, L. and Gong, J. (2010). High-reliability and harmonic-sharing dual parallel topology for active power filter. In: Proceedings of IEEE Power Electronics for Distributed Generation Systems, Hefei, China, 16–18, pp. 240–245.
  • Wang, J., Han, X., Ma, H. and Bai, Z. (2019). Analysis and injection control of circulating current for modular multilevel converters. IEEE Transactions on Industrial Electronics, 66(3), pp. 2280–2290.
  • Ziwen, L., Shihong, M., Zhihua, F., Yilong, K., and Qingyu, T. (2019). Analysis of the performance characteristics and arm current control for modular multilevel converter with asymmetric arm parameters. International Journal of Electrical Power & Energy Systems, 110, pp. 258–270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae8466b4-41c3-42ac-8e77-6c3bf10a912c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.