Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper concerns the characteristic parameters of the selected isotropic failure criteria, i.e. Mohr–Coulomb, Drucker–Prager, Matsuoka–Nakai and Lade–Duncan. The parameters are determined directly from the failure criteria and stress measurements or by semi-theoretical approach, assuming that the soil obeys the associated flow rule and using the plane strain condition. In the latter case, the parameters can be expressed as functions of the plane strain internal friction angle, which is determined from measurements. The principal stress tensor components, corresponding to the soil peak strength and necessary to obtain the failure criteria parameters, are measured in a series of true triaxial, plane strain tests, on coarse Skarpa sand samples of different initial relative density, subjected to various confining pressures.
Wydawca
Czasopismo
Rocznik
Tom
Strony
237--254
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
- Institute of Hydro-Engineering of Polish Academy of Sciences, Kościerska 7, 80-328 Gdańsk, Poland
Bibliografia
- [1] Alshibli A., K., Batiste S. N., Sture S. Strain localization in sand: plane strain versus triaxial compression. J. Geotech. Geoenviron. Eng. ASCE 2003; 129 (6); 483-494. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(483)
- [2] Barreto D, O’Sullivan C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions. Granular Matter 2012;14(4); 505- 521. https://doi.org/10.1007/s10035-012-0354-z
- [3] Been, K. & Jefferies, M. G. (1985) A state parameter for sands. Geotechnique 1985; 35(2); 99-l 12. https://doi.org/10.1680/ geot.1985.35.2.99
- [4] Been, K., Jefferies, M. G. Discussion on a state parameter for sands. Geotechnique 1986; 36(1); 123–132.
- [5] Bishop, A. W. Discussion on Soil Properties and Their Measurement. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering 1961; III; 92-100.
- [6] Bishop A. W. Roscoe Memorial Conference 1971.
- [7] Bolton M.D. Strength and dilatancy, Geotechnique 1986; 36(1); 65-78. DOI: 10.1680/geot.1986.36.1.65
- [8] Chakraborty T., Salgado R. Dilatancy and Shear Strength of Sand at Low Confining Pressure. Journal of Geotechnical and Geoenviromental Engineering 2010; 136(3); 527-532. https:// doi.org/10.1061/(ASCE)GT.1943-5606.0000237
- [9] Cornforth Derek H. Some Experiments on the Influence of Strain Conditions on the Strength of Sand. Geotechnique 1964; 14; 143-167. https://doi.org/10.1680/geot.1964.14.2.143
- [10] Desrues, J. , Viggiani, G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Analyt. Methods Geomech. 2004; 28(4); 279 – 321. DOI: 10.1002/nag.338
- [11] Deusdado N., Antao A. N., daSilva M. V., Guerra N. Application of the Upper and Lower-bound Theorems to Three-dimensional Stability of Slopes. Procedia Engineering, 2006; 143; 674-681. DOI: 10.1016/j.proeng.2016.06.09
- [12] Di Santolo S. A., Evangelista, A., Aversa, S. Upper and lower bound solution for dynamic active earth pressure on cantilever walls, 2012; ,Italy: 15 WCEE, Lisbon.
- [13] Drucker DC, Prager W. Soil mechanics and plastic analysis or limit design. Journal of applied Mathematics 1952; 10; 157–165.
- [14] Eekelen H. A. M. Isotropic yield surfaces in three dimensions for use in soil mechanics. International Journal for Numerical and Analytical Methods in Geomechanics 1980; 4(1); 89-101. https://doi.org/10.1002/nag.1610040107
- [15] Georgiadis K., Potts D. M., Zdravkovic L. Modelling the shear strength of soils in the general stress space. Computers and Geotechnics 2004; 31; 357-364. DOI: 10.1016/j.compgeo.2004.05.002
- [16] Houlsby G. T. A general failure criterion for frictional and cohesive materials. Soils and Foundations 1986; 26(2); 97-101.
- [17] Kulhawy, F. H., Mayne, P. W. Manual on Estimating Soil Properties for Foundation Design. Final Report. Project 1493-6, EL-6800, Electric Power Research Institute, Palo Alto, CA 1990.
- [18] Lade, P. V., Duncan J., M., Elasto–plastic stress-strain theory for cohesionless soil. Journal of Geotechnical and Geoenvironmental Engineering 1975; 101; 1037-53.
- [19] Lade, P. V., Duncan J., M., Cubical Triaxial Tests on Cohesionless Soils. Soil Mechanics and Foundation Division 1973; 99; 793-812.
- [20] Lagioia R, Panteghini A. The influence of the plastic potential on plane strain failure, International Journal for Numerical and Analytical Methods in Geomechanics 2014; 38; 844-862. DOI: 10.1002/nag.2236
- [21] Lee K. L. Comparison of plane strain and triaxial tests on sand. Journal of the Soil Mechanics and Foundations Division 1970; Proc. ASCE, SM3; 901-923.
- [22] Leśniewska D., Niedostatkiewicz M., J. Tejchman J. Experimental study on shear localization in granular materials within combined strain and stressfield. Strain; 47; 218–231. https://doi.org/10.1111/j.1475-1305.2012.00838.x
- [23] Li B., Chen L., Gutierrez M. Influence of the intermediate principal stress direction on the mechanical behavior of cohesionless soils using the discrete element method. Computers and Geotechnics 2017; 86; 52-66. DOI: 10.1016/j.compgeo.2017.01.004
- [24] Li Y. , Yang Y. , Yu H.-S. , Roberts G. Effect of sample reconstitution methods on the behaviors of granular materials under shearing. Journal of Testing and Evaluation 2018; 46; 20170126. doi:10.1520/JTE20170126. https://doi.org/10.1520/JTE20170126
- [25] Liu M., Gao Y., Liu H. A nonlinear Drucker-Prager and Matsuoka-Nakai unfied failure criterion for geomaterials with separated invariants. International Journal of Rock Mechanics & Mining Sciences 2012; 50; 1-10. https://doi.org/10.1016/j.ijrmms.2012.01.002
- [26] Matsuoka H., Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Of Japan Society of Civil Engineers 1974; 232; 59-70. https://doi.org/10.2208/jscej1969.1974.232_59
- [27] Matsuoka H., Nakai T. Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria. Soils and Foundations 1985; 25(4); 123-128. https://doi.org/10.3208/sandf1972.25.4_123
- [28] Mitchell J. K., Soga K. Fundamentals of Soil Behaviour 2005; John Wiley & Sons, INC.
- [29] Ochiai H, Lade P. V. Three-dimensional behaviour of sand with anisotropic fabric. Journal of Geotechnical Engineering 1983; 109(10); 1313-28. https://doi.org/10.1061/(ASCE)0733- 9410(1983)109:10(1313)
- [30] Rowe P. W. The relationship between the shear strength of sands in triaxial compression, plane strain and direct shear. Geotechnique 1969; 19(1); 75-86.
- [31] Sadrekarimi A., Olson S. M. Critical state friction angle of sands. Geotechnique 2011, 61(9); 771-783. https://doi.org/10.1680/geot.9.P.090
- [32] Sarkar D., Goudarzy M., Konig D. An interpretation of the influence of particle shape on the mechanical behaviour of granular material. Granular Matter 2019; 21(53); 1-24. DOI: 10.1007/s10035-019-0909-3
- [33] Schanz T., Vermeer P. A. Angles of friction and dilatancy of sand. Geotechnique 1996; 46(1); 145-151. https://doi.org/10.1680/geot.1996.46.1.145
- [34] Shao, S., Shao, S.J., Zhang, Y. and Chen, C.L. Novel Soil Strength Criterion Compared with Conventional Criteria. Geomaterials 2017; 7; 25-39. http://dx.doi.org/10.4236/gm.2017.71003
- [35] Sławińska J. The Mohr-Coulomb friction angle of granular soils under different stress conditions. Acta Sci. Pol. Architectura 2018, 17 (4); 51–60; DOI: 10.22630/ASPA.2018.17.4.40
- [36] Tatsuoka F., Sakamoto M., Kawamura T, Fukushima S. Strength and Deformation Characteristics of Sand in Plane Strain Compression at Extremely Low Pressures. Soils and Foundations 1986; 26(1); 65-84. https://doi.org/10.3208/sandf1972.26.65
- [37] Wanatowski D., Chu J. Static liquefaction of sand in plane strain. Canadian Geotechnical Journal 2007; 44(3); 299-313. DOI: 10.1139/t06-078
- [38] Wanatowski D., Chu J., Loke W. L. Drained instability of sand in plane strain. Canadian Geotechnical Journal 2010; 47(4); 400- 412. DOI: 10.1139/T09-111
- [39] Vikash G., Prashant A. Calibration of 3D Failure Criteria for Soils Using Plane Strain Shear Strength Data. Soil Behavior and Geo-Micromechanics. GeoShanghai 2010 International Conference. 86-91.
- [40] Yamamuro, J. A., Lade, P. V. (1996). Drained sand behavior in axisymmetric tests at high pressures. Journal of Geotechnical Engineering ASCE 1996; 122( 2); 109–119. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(109)
- [41] Yang Z. X., Jardine R. J., Zhu B. T., Foray P., Tshuha C. H. C. Sand grain crushing and interface shearing during displacement pile installation in sand. Geotechnique 2010; 60(6); 469-782. https://doi.org/10.1680/geot.2010.60.6.469
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae83e1d5-199e-41e1-8a96-d3963e374e0f