PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Verification of models of gas bubble break-up causedby eddies generated by a self-aspirating disk impeller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a photographic analysis of the break-up of gas bubbles flowing out of the outletsof a self-aspirating disk impeller. It was found that bubbles detached from the interfacial surface mostoften disintegrate to form several daughter bubbles. Further in the work, the population balance modelwas verified for several formulas describing the bubble break-up rate. It has been found that a good fitto the experimental data is provided by the formula given by Laakkonen for 5 daughter bubbles. Thepossibility of using the Monte Carlo method to model the bubble break-up process was also determined.For this method, a good agreement of results was achieved for the division into a maximum of 10daughter bubbles. In the case of this method it was also found necessary to use the function of break-upfrequency at a higher rate for smaller bubbles.
Rocznik
Strony
45–--57
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering,Wolczanska 213, 90-924 Lodz, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering,Wolczanska 213, 90-924 Lodz, Poland
Bibliografia
  • 1. Alopaeus V., Koskinen J., Keskinen K.I., 1999. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chem. Eng. Sci., 54, 5887–5899. DOI: 10.1016/S0009-2509(99)00170-0.
  • 2. Attarakih M.M., Drumm C., Batr H.-J., 2009. Solution of the population balance equation using the sectional quadrature method of moments (SQMOM). Chem. Eng. Sci., 64, 742–752. DOI: 10.1016/j.ces.2008.05.006.
  • 3. van der Hengel E.I.V., Deen N.G., Kuipers J.A.M., 2005. Application of coalescence and breakup models in a discrete bubble model for bubble columns. Ind. Eng. Chem. Res., 44, 5233–5245. DOI: 10.1021/ie0492449.
  • 4. Kalal Z., Jahoda M., Fořt I., 2014. Modeling of the bubble size distribution in an aerated stirred tank: Theoretical and numerical comparison of different breakup models. Chem. Process Eng., 35, 331–348. DOI: 10.2478/cpe2014-0025.
  • 5. Kania A., Kuncewicz C., 2002. Energy dissipation rate and the size of eddies in the tank with self-aspirating impeller. 15th International Congress of Chemical & Process Engineering CHISA 2002, Praha.
  • 6. Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J., 2006. Modeling local gas-liquid mass transfer in agitated vessels. 12th European Conference on Mixing, Bologna. 193–200.
  • 7. Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J., 2007. Modeling local bubble size distribution in agitated vessels. Chem. Eng. Sci., 62, 721–740. DOI: 10.1016/j.ces.2006.10.006
  • 8. Lehr F., Milles M., Mewes D., 2002. Bubble-size distributions and flow fields in bubble columns. AIChE J., 48, 2426–2443. DOI: 10.1002/aic.690481103.
  • 9. Luo H., Svendsen H.F., 1996. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J., 42, 1225–1233. DOI: 10.1002/aic.690420505.
  • 10. Martinez-Bazan C., Montanes J.L., Lasheras J.C., 1999. On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech., 401, 183–207. DOI: 10.1017/S0022112099006680.
  • 11. Paglianti A., Fujasowa M., Montante G., 2006. Experimental study and a mechanistic model on the effect of ventilated cavities in gassed stirred vessels. 12th European Conference on Mixing, Bologna. 650–657.
  • 12. Pohorecki R., MoniukW., Zdrojkowski A., Bielski P., 2001a. Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure. Chem. Eng. Sci., 56, 1167–1174. DOI: 10.1016/S0009-2509(00)00336-5.
  • 13. Pohorecki R., MoniukW., Bielski P., Zdrojkowski A., 2001b. Modelling of the coalescence/redispersion processes in bubble columns. Chem. Eng. Sci., 56, 6157–6164. DOI: 10.1016/S0009-2509(01)00214-7.
  • 14. Stelmach J., 2000. Investigations of a self-aspirating disk impeller work. Ph.D. thesis, Lodz University of Technology, Lodz, Poland (in Polish).
  • 15. Stelmach J., 2006. Bubble size in the initial phase of self-aspiration. Inż. Apar. Chem., 6s, 225–227.
  • 16. Stelmach J., 2007. Distribution of gas bubble sizes at the beginning of self-aspirating. Inż. Apar. Chem., 4–5, 117–119.
  • 17. Stelmach J., Kuncewicz C., 2011. Liqud and gas bubble velocities at the level of a self-aspirating disk impeller. Przem. Chem., 90/9, 1680–1685.
  • 18. Stelmach J., Kuncewicz C., Musoski R., 2016. Analysis of the mechanism of gas bubble break-up in liquids during the self-aspirating impeller operation. Chem. Process Eng., 37, 441–457. DOI: 10.1515/cpe-2016-0037.
  • 19. Stelmach J., Musoski R., Kuncewicz C., Głogowski M., 2019. Turbulent Energy dissipation rate and turbulence scales in the blade region of a self-aspirating disk impeller. J. Appl. Fluid Mech., 12, 3, 715–728.DOI: 10.29252/jafm.12.03.28836.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae7dbc24-8f13-4ac6-8e71-56df98be4c09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.