PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymetryczne reakcje pericykliczne katalizowane kompleksami magnezu

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Magnesium-catalyzed asymmetric pericyclic reactions
Języki publikacji
PL
Abstrakty
EN
II Group-metals, like magnesium, are one of the most widespread elements in the environment. The abundance of II-group metals in the Earth’s crust is over 108 times greater than the precious metals. For the industrial applications, the important factors are the low costs of production and higher accessibility of their compounds. This puts the spotlight on alkaline-earth metals competing with transition elements as catalysts in organic synthesis. Features of their derivatives, like mild Lewis acidity and strong Brønsted basicity enabled them to catalyze reactions where Lewis-acidactivation of the substrate is essential. In this review the emphasis was put on magnesium-catalyzed pericyclic reactions, which are recognized as one of the most important methods of new carbon-carbon or carbon-heteroatom bonds formation. Using the catalysts based on II-group metal cations and chiral ligands, a highly stereoselective conversion of achiral substrates into enantioenriched products is possible. The Mg-based catalysts have been used in Diels-Alder, ene and 1,3-dipolar additions. Described synthesis methods were characterized by high efficiency (chemical yields and enantiomeric excesses). Where applicable, the relationships between the structure of catalyst/substrates, conditions and efficiency were discussed. Just now there are a few applications, for example in synthesis of alkaloid (–)-manzacidine or antibiotic of algal origin – (–)-malyngolide.
Rocznik
Strony
755--788
Opis fizyczny
Bibliogr. 94 poz., rys., wykr.
Twórcy
autor
  • Studentka w Wydziale Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu
Bibliografia
  • [1] E.L. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds, Wiley, Nowy Jork, 1994.
  • [2] W.S. Knowles, Angew. Chem. Int. Ed., 2002, 41, 1998.
  • [3] R. Noyori, Chem. Commun., 2005, 40, 1807.
  • [4] B.M. Trost, I. Fleming Comprehensive Organic Synthesis, (R.A. Johnson, B.K. Sharpless Addition Reactions with Formation of Carbon-Oxygen Bonds: (ii) Asymmetric Methods of Epoxidation), Elsevier Science, 1991.
  • [5] K.A. Ahrendt, C.J. Borths, D.W.C. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243.
  • [6] B. List, Tetrahedron, 2002, 58, 5573.
  • [7] D. Yang, L. Wang, D. Li, R. Wang, Chem, 2019, 5, 1108.
  • [8] F.A. Cotton, G. Wilkinson, P.L. Gaus, Basic Inorganic Chemistry, Wiley-VCH, Nowy Jork, 1995.
  • [9] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Nowy Jork, 1998.
  • [10] M. North, J.H. Clark, Sustainable Catalysis: With Non-endangered Metals, Part 1, Royal Society of Chemistry, Cambridge, 2016.
  • [11] S. Harder, Early Main Group Metal Catalysis, Wiley-VCH, Weinheim, 2020.
  • [12] Y. Yamashita, T. Tsubogu, S. Kobayashi, Chem. Sci., 2012, 3, 967.
  • [13] H. Pellissier, Org. Biomol. Chem., 2017, 15, 4750.
  • [14] Y. Yamashita, T. Tsubogu, S. Kobayashi, Top. Organomet. Chem., 2015, 62, 121.
  • [15] K.D. Borah, J. Bhuyan, Dalton Trans., 2017, 46, 6497.
  • [16] M.O. Senge, S.A. MacGowan, Handbook of Porphyrin Science, ed. K.M. Kadish, K.M. Smith, R. World Scientific, Imperial College Press, Singapur, 2010, 13, 253.
  • [17] M.H. Stowell, T.M. McPhillips, D.C. Rees, S.M. Soltis, E. Abresch, G. Feher, Science, 1997, 276, 812.
  • [18] D.M. Palm, A. Agostini, V. Averesch, P. Girr, M. Werwie, S. Takahashi, H. Satoh, E. Jaenicke, H. Paulsen, Nat. Plants, 2018, 4, 920.
  • [19] A.M. Al Alawi, S.W. Majoni, H. Falhammar, Int. J. Endocrinol., 2018, 2018, 1.
  • [20] U. Grober, J. Schmidt, K. Kisters, Nutrients, 2015, 7, 8199.
  • [21] M. Cieślak-Golonka, J. Starosta, M. Wasielewski, Wstęp do chemii koordynacyjnej, Wydawnictwo Naukowe PWN, Warszawa, 2013.
  • [22] J. Clayden, N. Greeves, S. Warren, P. Wothers, Wydawnictwa Naukowo-Techniczne, Warszawa, 2010.
  • [23] F. Bickelhaupt, J. Organomet. Chem., 1994, 475, 1.
  • [24] T.H. Black, Handbook of Reagents for Organic Synthesis, Acidic and Basic Reagents, Wiley, Chichester, 1999.
  • [25] T.H. Black, L.A. Pacquete (Ed-in-Chief), Encyclopedia of Reagents for Organic Synthesis, Wiley, Chichester, 1995, 5, 3197.
  • [26] J.A. Norton, Chem. Rev., 1942, 31, 319.
  • [27] J. McMurry, Chemia organiczna, PWN, Warszawa, 2015.
  • [28] N. Sogani, R.K. Bansal, Curr. Catalysis, 2017, 6, 3.
  • [29] E.J. Corey, N. Imai, H-Y. Zhang, J. Am. Chem. Soc., 1991, 113, 729.
  • [30] K. Narasaka, M. Inoue, N. Okada, Chem. Lett., 1986, 15, 1109.
  • [31] E.J. Corey, K. Ishihara, Tetrahedron Lett., 1992, 33, 6807.
  • [32] H. Yamamoto, E. Carreira (A. Adachi, S. Slevakumar, M.P. Sibi), Comprehensive Chirality, Elsevier, 2012.
  • [33] E. Casali, G. Faita, L. Toma, Organometallics, 2022, 41, 105.
  • [34] G. Desimoni, G. Faita, P.P. Righetti, Tetrahedron Lett., 1996, 37, 3027.
  • [35] P. Carbone, G. Desimoni, G. Faita, S. Filippone, P.P. Righetti, Tetrahedron, 1998, 54, 6099.
  • [36] D.A. Evans, S.J. Miller, T. Lectka, P. von Matt, J. Am. Chem. Soc., 1999, 121,7559.
  • [37] L. Quaranta, O. Corminboeuf, P. Renaud, Org. Lett., 2002, 4, 39.
  • [38] R. Rasappan, D. Laventine, O. Reiser, Coord. Chem. Rev., 2007, 252, 702.
  • [39] S. Kobayashi, T. Hayashi, J. Org. Chem., 1995, 60, 1098.
  • [40] G. Desimoni, G. Faita, A. Mortoni, P.P. Righetti, Tetrahedron Lett., 1999, 40, 2001.
  • [41] G. Desimoni, G. Faita, A.G.Invernizzi, P.P. Righetti, Tetrahedron Lett., 1997, 53, 7671.
  • [42] S. Kobayashi, M. Horibe, Chem. Eur. J., 1997, 3, 1472.
  • [43] M. Hatano, K. Moriyama, T. Maki, K. Ishihara, Angew. Chem. Int. Ed., 2010, 49, 3823.
  • [44] G. Li, T. Liang, L. Wojtas, J.C. Antilla, Angew. Chem. Int. Ed. 2013, 52, 1.
  • [45] N.V. Hanhan, N.R. Ball-Jones, N.T. Tran, A.K. Franz, Angew. Chem. Int. Ed., 2011, 51, 989.
  • [46] H. Lin, S. J. Danishefsky, Angew. Chem. Int. Ed., 2003, 42, 36.
  • [47] A. Madin, C.J. O’Donnell, T. Oh, D.W. Old, L.E. Overman, M.J. Sharp, J. Am. Chem. Soc., 2005, 127, 18054.
  • [48] X. Zhou, T. Xiao, Y. Iwama, Y. Qin, Angew. Chem. Int. Ed., 2012, 51, 4909.
  • [49] S. Danishefsky, T. Kitahara, J. Am. Chem. Soc., 1974, 96, 7807
  • [50] H. Du, X. Zhang, Z. Wang, H. Bao, T. You, K. Ding, Eur. J. Org. Chem., 2008, 13, 2248.
  • [51] A.T. kal Koshvandi, M.M. Heravi, Tetrahedron: Asymmetry, 2017, 28, 1506.
  • [52] H. Waldmann, Synthesis, 1994, 6, 535.
  • [53] K. Maruoka, Catalytic Asymmetric Synthesis, Wydawnictwo Wiley-VCH, Nowy Jork, 2000.
  • [54] K.A. Jørgensen, Cycloaddition Reactions in Organic Synthesis, Wydawnictwo Wiley-VCH, Weinheim, 2002.
  • [55] D. Guillaneux, S.-H. Zhao, O. Samuel, D. Rainford, H.B. Kagan, J. Am. Chem. Soc., 1994, 116, 9430.
  • [56] D. Heller, H.J. Drexler, C. Fischer, H. Buschmann, W. Baumann, B. Heller, Angew. Chem. Int. Ed., 2000, 39, 495.
  • [57] T. Satyanarayana, S. Abraham, H.B. Kagan, Angew. Chem. Int. Ed., 2008, 48, 456.
  • [58] M. Hatano, T. Horibe, K. Yamishita, K. Ishikara, Asian J. Org. Chem., 2013, 2, 952.
  • [59] J. Savard, P. Brassard, Tetrahedron Lett., 1979, 20, 4911.
  • [60] V. Boucard, G. Broustal and J. M. Campagne, Eur. J. Org. Chem., 2007, 2, 225.
  • [61] J.D. Winkler, K. Oh, Org. Lett., 2005, 12, 2421.
  • [62] V.E. Filatow, J. Kuznetsova, L. Petrovskaya, D. Yuzabchuk, V.A. Tafeenko, N.V. Zyk, E.K. Beloglazkina, ACS Omega, 2021, 6, 22740.
  • [63] A. Quintavalla, Curr. Med. Chem., 2018, 25, 917.
  • [64] P. Yadav, R. Pratap, V.J. Ram, Asian J. Org. Chem., 2020, 9, 1377.
  • [65] J. Zheng, L. Lin, Y. Kuang, J. Zhao, X. Liu, X. Feng, Chem. Commun., 2014, 50, 994.
  • [66] X. H. Liu, L. L. Lin, X. M. Feng, Acc. Chem. Res., 2011, 44, 574.
  • [67] J. Wang, C. Gao, X. Chen, L Liu, Advances in Applied Microbiology, Elsevier Inc., 2021.
  • [68] J. Zheng, L. Lin, K. Fu, Y. Zhang, X. Liu, X. Feng, Chem. Eur. J., 2014, 20, 14493.
  • [69] G. Desimoni, G. Faita, P. Quadrelli, Chem. Rev., 2013, 113, 5924.
  • [70] J.H. Cardellina, R.E. Moore, E.V. Arnold, J. Clardy, J. Org. Chem., 1979, 44, 4039.
  • [71] A.K. Ghosh, M. Shirai, Tetrahedron Lett., 2001, 42, 6231.
  • [72] K. Mikami, Pure Appl. Chem., 1996, 68, 639.
  • [73] M.L. Clarke, M.B. France, Tetrahedron, 2008, 64, 9003.
  • [74] X. H. Liu, K. Zheng, X. M. Feng, Synthesis, 2014, 46, 2241.
  • [75] K. Zheng, Y. Yang, J. Zhao, C. Yin, L. Lin, X. Liu, X. Feng, Chem. Eur. J., 2010, 16, 9969.
  • [76] S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320.
  • [77] E.J. Corey, A. Guzman-Perez, Angew. Chem. Int. Ed., 1998, 37, 388.
  • [78] H. Cho, I. Shin, K. Cho, H. Yoon, E.K. Yoo, M.-J. Kim, S. Park, I.-K. Lee, N.D. Kim, T. Sim, J. Med. Chem. 2019, 62, 8461.
  • [79] X. Wang, X. Shen, Y. Yan, H. Li, Biosci. Rep., 2021, 41, 20204402.
  • [80] T. Deligeorgiev, N. Gadjev, A. Vasilev, St. Kaloyanova, J.J. Vaquero, J. Alvarez-Builla, Mini. Rev. Org. Chem., 2010, 7, 44.
  • [81] R. S. Varma, ACS Sustain. Chem. Eng., 2016, 4, 5866.
  • [82] Y.S.. Kurniawan, K.T.A. Priyangga, P.A. Krisbiantoro, A.C. Imawan, J. Multidiscip. Appl. Nat. Sci., 2021, 1, 1.
  • [83] W. Luo, J. Zhao, J. Ji, L. Lin, X. Liu, H. Mei, X. Feng, Chem. Commun., 2015, 51, 10042.
  • [84] M. Walker, C. Heathcock, J. Org. Chem., 1992, 57, 5566.
  • [85] S. Carmeli, R.E. Moore, G.L. Patterson, Tetrahedron Lett., 1991, 32, 2593.
  • [86] D. Donnelly, Br. J. Pharmacol., 2012, 166, 27.
  • [87] J.J. Holst, Diabetologia, 2005, 49, 253.
  • [88] J. Eiki, K. Saeki, N. Nagano, T. Iino, M. Yonemoto, Y. Takayenoki-Iino, S. Ito, T. Nishimura, Y. Sato, M. Bamba, H. Watanabe, K. Sasaki, S. Ohyama, A. Kanatani, T. Nagase, T. Yada, J. Endocrinol., 2009, 201, 361.
  • [89] M.I. del Olmo García, J.F. Merino-Torres, Med. Hypotheses, 2020, 136, 109504.
  • [90] D.-C. Wang, M.-S. Xie, H.-M. Guo, G.-R. Qu, M.-C. Zhang, S.-L. You, Angew. Chem., Int. Ed., 2016, 55, 14111.
  • [91] M.P. Sibi, L.M. Stanley, T. Soeta, Org. Lett., 2007, 9, 1553.
  • [92] J. Kobayashi, K. Inaba, M. Tsuda, Tetrahedron, 1997, 53, 16679.
  • [93] J. Kobayashi, F. Kanda, M. Ishibashi, H. Shigemori, J. Org. Chem., 1991, 56, 4574.
  • [94] K. Namba, T. Shinada, T. Teramoto, Y. Ohfune, J. Am. Chem. Soc., 2000, 122, 10708.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae710c87-cf6f-4fd5-bc58-383710e21d05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.