Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Technology assessment and selection problems have gained importance in recent decades as the used technology often determines the enterprises’ competitive advantage. Due to the extensive catalogue of criteria that should be considered and, on the other hand, the extensive catalogue of available technologies and solutions, the decision-making process of choosing a technology becomes a significant challenge for organisations and individuals. This study aims to identify the main research directions and trends in the scientific literature on applying multi-criteria analysis (MCA) in the context of technology assessment and/or technology selection. The author conducted a bibliometric analysis of publications indexed in the Web of Science and Scopus databases. The methodology of this study also included identifying the most productive authors, countries, organisations, and journals and analysing the occurrence and co-occurrence of terms. Final analyses included 380 publications retrieved from the Scopus database and 311 documents retrieved from the Web of Science repository. The analysis of the occurrence of terms and keywords allowed distinguishing two main research directions in using MCA methods in assessing and selecting industrial and health and medicine-related technologies. Some sub-areas have also been distinguished within these two areas: energy and renewable energy technologies, waste management, biomedical and medical technologies, and drug production technologies.
Rocznik
Tom
Strony
116--137
Opis fizyczny
Bibliogr. 154 poz., tab., wykr.
Twórcy
autor
- Bialystok University of Technology, Poland
Bibliografia
- Adar, T., & Delice, E. K. (2019). New integrated approaches based on MC-HFLTS for healthcare waste treatment technology selection. Journal of Enterprise Information Management, 32(4), 688-711. doi: 10.1108/JEIM-10-2018-0235
- Afgan, N. H., & Carvalho, M. G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739-755. doi: 10.1016/S0360-5442(02)00019-1
- Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., & Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropyweighted TOPSIS technique: The case study of Lagos, Nigeria. Energy, 201, 117675. doi: 10.1016/j.energy.2020.117675
- Alao, M., Popoola, O. & Ayodele, T. (2022). A novel fuzzy integrated MCDM model for optimal selection of waste-to-energy-based-distributed generation under uncertainty: A case of the City of Cape Town, South Africa. Journal of Cleaner Production, 343, 130824. doi: 10.1016/j.jclepro.2022.130824
- Alcácer, V. & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal, 22. doi: 10.1016/j.jestch.2019.01.006
- Ali, T., Nahian, A. J., & Ma, H. (2020). A hybrid multicriteria decision-making approach to solve renewable energy technology selection problem for Rohingya refugees in Bangladesh. Journal of Cleaner Production, 273, 122967. doi: 10.1016/j.jclepro.2020.122967
- Ansari, R., Soltanzadeh, J., & Tavassoli, A. (2016). Technology selection between technology management and decision making: A case study from the Iranian automotive industry. International Journal of Automotive Technology and Management, 16(4), 365-388. doi: 10.1504/IJATM.2016.081618
- Arslan, H. (2017). Current classification of multi criteria decision analysis methods and public sector implementations. In A. Murat, N. S., Pinarcioglu, & U. Orgen (Eds.), Current Debates in Public Finance, Public Administration, & Environmental Studies, (pp. 241–261). London, United Kingdom: IJOPEC Publication Limited.
- Aydiner, C., Sen, U., Koseoglu-Imer, D. Y., & Can Dogan, E. (2016). Hierarchical prioritization of innovative treatment systems for sustainable dairy wastewater management. Journal of Cleaner Production, 112, 4605-4617. doi: 10.1016/j.jclepro.2015.08.107
- Badia, X., et al. (2019). Patient involvement in reflective multicriteria decision analysis to assist decision making in oncology. International Journal of Technology Assessment in Health Care, 35(1), 56-63. doi: 10.1017/S0266462318003641
- Baran-Kooiker, A., Czech, M., & Kooiker, C. (2018). Multi- Criteria Decision Analysis (MCDA) Models in Health Technology Assessment of Orphan Drugs-a Systematic Literature Review. Next Steps in Methodology Development? Frontier in Public Health, 6, 287. doi: 10.3389/fpubh.2018.00287
- Baran-Kooiker, A., et al. (2019). Applicability of the evidem multi-criteria decision analysis framework for orphan drugs - results from a study in 7 Eurasian countries. Acta Poloniae Pharmaceutica, 76(3), 581- 598. doi: 10.32383/appdr/102681
- Belezas, F., & Daniel, A. (2022). Innovation in the sharing economy: A systematic literature review and research framework. Technovation, 102509. doi: 10.1016/j.technovation.2022.102509
- Beyaz, H. F., & Yildirim, N. (2019). A Multi-criteria Decision- Making Model for Digital Transformation in Manufacturing: A Case Study from Automotive Supplier Industry. Proceedings of the International Symposium for Production Research 2019, 217-232. doi: 10.1007/978-3-030-31343-2_19
- Blonda, A., Denier, Y., Huys, I., & Simoens, S. (2021). How to Value Orphan Drugs? A Review of European Value Assessment Frameworks. Frontiers in Pharmacology, 12, 631527. doi: 10.3389/fphar.2021.631527
- Boudard, A., et al. (2016). Introduction of Health technology assessment at hospital [Mise en place de l’évaluation des technologies de santé en milieu hospitalier]. Annales Pharmaceutiques Francaises, 74(6), 473-481. doi: 10.1016/j.pharma.2016.03.001
- Brans, J.P., Mareschal, B., & Vincke, P. (1984). PROMETHEE: A new family of outranking methods in multicriteria analysis. Operational Research, 3, 477-490.
- Buyukozkan, G., & Gocer, F. (2019). Technology Selection for Logistics and Supply Chain Management by the Extended Intuitionistic Fuzzy TOPSIS. Proceedings - 2019 3rd International Conference on Data Science and Business Analytics, ICDSBA 2019, 9270219, 129- 134. doi: 10.1109/ICDSBA48748.2019.00036
- Buyukozkan, G., Feyzioglu, O., & Gocer, F. (2018). Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy Choquet integral approach. Transportation Research Part D-Transport and Environment, 58, 186-207. doi: 10.1016/j.trd.2017.12.005
- Carver, S. J. (1991). Integrating multi-criteria evaluation with geographical information systems. Geographical Information Systems, 5(3), 321-339. doi: 10.1080/02693799108927858
- Castro, H. E., Moreno-Mattar, O., & Rivillas, J. C. (2018). HTA and MCDA solely or combined? The case of priority-setting in Colombia. Cost Effectiveness and Resource Allocation, 6(1), 42. doi: 10.1186/s12962-020-00237-5
- Cavallaro, F., Zavadskas, E. K., Streimikiene, D., & Mardani, A. (2019). Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights. Technological Forecasting and Social Change, 140, 258-270. doi: 10.1016/j.techfore.2018.12.009
- Chadderton, C., et al. (2017). Decision support for selection of food waste technologies at military installations. Journal of Cleaner Production, 141, 267-277. doi: 10.1016/j.jclepro.2016.08.091
- Chan, F. T. S., Chan, M. H., & Tang, N. K. H. (2000). Evaluation methodologies for technology selection. Journal of Materials Processing Technology, 107(1-3), 330- 337. doi: 10.1016/S0924-0136(00)00679-8
- Chodakowska, E., & Nazarko, J. (2020a). Rough Sets and DEA - a hybrid model for technology assessment. MATEC Web of Conferences, 312(2), 01006. doi: 10.1051/matecconf/202031201006
- Chodakowska, E., & Nazarko, J. (2020b). Hybrid rough set and data envelopment analysis approach to technology prioritisation. Technological and Economic Development of Economy, 26(4), 1-22. doi: 10.3846/tede.2020.12538
- Choudhury, A. K., Shankar, R., & Tiwari, M. K. (2006). Consensus-based intelligent group decision-making model for the selection of advanced technology. Decision Support Systems, 42(3), 1776-1799. doi: 10.1016/j.dss.2005.05.001
- Ciani, L., Guidi, G., & Patrizi, G. (2022). Human reliability in railway engineering: Literature review and bibliometric analysis of the last two decades. Safety Science, 151, 105755. doi: 10.1016/j.ssci.2022.105755.
- Daniels, N. (2018). Combining A4R and MCDA in priority setting for health. Cost Effectiveness and Resource Allocation, 169, 51. doi: 10.1186/s12962-018-0124-9
- Danner, M., et al. (2011). Integrating patients’ views into health technology assessment: Analytic hierarchy process (AHP) as a method to elicit patient preferences. International Journal of Technology Assessment in Health Care 27(4), 369-375. doi: 10.1017/S0266462311000523
- Dat, L. Q., Chou, S. Y., Le, N. T., Wiguna, E., Yu, T. H. K., & Phuc, P. N. K. (2014). Selecting renewable energy technology via a fuzzy MCDM approach. In Moving Integrated Product Development to Service Clouds in the Global Economy. Proceedings of the 21st ISPE Inc. International Conference on Concurrent Engineering, CE 2014, p. 796-805. IOS Press.
- Delvenne, P., & Rosskamp, B. (2021). Cosmopolitan technology assessment? Lessons learned from attempts to address the deficit of technology assessment in Europe. Journal of Responsible Innovation, 1-26. doi: 10.1080/23299460.2021.1988433
- DiStefano, M. J., & Krubiner, C. B. (2020). Beyond the numbers: a critique of quantitative multi-criteria decision analysis. International Journal of Technology Assessment in Health Care, 36(4), 292-296. doi: 10.1017/S0266462320000410
- Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(C), 285-296. doi: 10.1016/j.jbusres.2021.04.070
- Effatpanah, S. K., et al. (2022). Comparative Analysis of Five Widely-Used Multi-Criteria Decision-Making Methods to Evaluate Clean Energy Technologies: A Case Study. Sustainability, 14(3), 1402. doi: 10.3390/su14031403
- Eilat, H., Golany, B., & Shtub, A. (2008). R&D project evaluation: An integrated DEA and balanced scorecard approach. Omega-International Journal Of Management Science, 36(5), 895-912. doi: 10.1016/j.omega.2006.05.002
- Elahi, M., Alvandi, M., Valehzagharad, H. K., & Memarzade, M. (2011). Selecting the best ABS sensor technology using fuzzy MADM. Scientific Research and Essays, 6(31), 6487-6498. doi: 10.5897/SRE11.1079
- Fang, H., Wang, X., & Song, W. (2020). Technology selection for photovoltaic cell from sustainability perspective: An integrated approach, Renewable Energy, 153, 1029-1041. doi: 10.1016/j.renene.2020.02.064
- Farghaly, M. N., et al. (2021). Recommendation for a Pilot MCDA Tool to Support the Value-Based Pur chasing of Generic Medicines in the UAE. Frontiers in Pharmacology, 12, 680737. doi: 10.3389/fphar.2021.680737
- Fetanat, A., Tayebi, M., & Mofid, H. (2021). Water-energy- food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision making framework under intuitionistic fuzzy environment. Sustainable Energy Technologies and Assessments, 43, 100937. doi: 10.1016/j.seta.2020.100937
- Freire, S. M., Nascimento, A., & de Almeida, R. T. (2019). A multiple criteria decision making system for setting priorities. IFMBE Proceedings, 68(1), 357-361. doi: 10.1007/978-981-10-9035-6_65
- Ghasempour, R., Nazari, M. A., Ebrahimi, M., Ahmadi, M. H., & Hadiyanto, H. (2019). Multi-criteria decision making (MCDM) approach for selecting solar plants site and technology: A review. International Journal of Renewable Energy Development, 8(1), 15-25. doi: 10.14710/ijred.8.1.15-25
- Gil-de-Castro, A., Moreno Muñoz, A., López Rodríguez, M. A., & De La Rosa, J. J. G. (2010). Energy supply for sustainable regional development in Cordoba. 2010 9th Conference on Environment and Electrical Engineering, EEEIC 2010, 5490026, 6-9. doi: 10.1109/EEEIC.2010.5490026
- Glińska, E., & Siemieniako, D. (2018). Binge drinking in relation to services – bibliometric analysis of scientific research directions. Engineering Management in Production and Services, 10(1), 45-54. doi: 10.1515/emj-2018-0004
- Govind Kharat, M., et al. (2019). Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection. Technology in Society, 57, 20-29. doi: 10.1016/j.techsoc.2018.12.005
- Gudanowska, A. E. (2017). A map of current research trends within technology management in the light of selected literature. Management and Production Engineering Review, 8(1), 78-88. doi: 10.1515/mper2017-0009
- Hajduk, S. (2017). Bibliometric Analysis of Publications on City Logistics in International Scientific Literature. Procedia Engineering, 182, 282-290. doi: 10.1016/j.proeng.2017.03.194
- Halicka, K. (2017). Main Concepts of Technology Analysis in the Light of the Literature on the Subject. Procedia Engineering, 182, 291-298. doi: 10.1016/j.proeng.2017.03.196
- Halicka, K. (2020). Technology Selection Using the TOPSIS Method. Foresight and STI Governance, 14(1), 85-96. doi: 10.17323/2500-2597.2020.1.85.96
- Hallerbach W., & Spronk J. (2003). The relevance of MCDM for financial decisions. Journal of Multi-Criteria Decision Analysis, 11, 187-195. doi: 10.1002/mcda.328
- Hamzeh, S. R., & Xun, X. (2019). Technology Selection Methods and Applications in Manufacturing: A Review from 1990 to 2017. Computers & Industrial Engineering, 138, 106123. doi: 10.1016/j.cie.2019.106123
- Hilgerink, M. P., Hummel, M. J. M., Manohar, S., Vaartjes, S. R. I., & Jzerman, M. J. (2011). Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis. Medical Devices-Evidence and Research, 4, 107-115. doi: 10.2147/MDER.S20169
- Houseman, O., Tiwari, A., & Roy, R. (2004). A methodology for the selection of new technologies in the aviation industry. Decision Engineering Report Series. Retrieved from https://dspace.lib.cranfield.ac.uk/handle/1826/772
- Hummel et al. (2012). Using the analytic hierarchy process to elicit patient preferences: Prioritizing multiple outcome measures of antidepressant drug treatment. Patient, 5(4), 25-237. doi: 10.2165/11635240-000000000-00000
- Husereau, D., Boucher, M., & Noorani, H. (2010). Priority setting for health technology assessment at CADTH. International Journal of Technology Assessment in Health Care, 26(3), 341-347. doi: 10.1017/S0266462310000383
- Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making Methods and Applications: A State of the Art Survey. New York, USA: Springer-Verlag.
- Ibáñez-Forés, V., Bovea, M. D., & Pérez-Belis, V. (2014). A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. Journal of Cleaner Production, 70, 259-281. doi: 10.1016/j.jclepro.2014.01.082
- Ighravwe, D. E., & Mashao, D. (2019). Development of a Techno-economic Framework for Renewable Energy Project Financing. Proceedings Of 2019 Ieee 2nd International Conference On Renewable Energy And Power Engineering (REPE 2019),120-124. doi: 10.1109/REPE48501.2019.9025162
- Ilangkumaran, M., et al. (2013). Optimization of wastewater treatment technology selection using hybrid MCDM. Management of Environmental Quality: An International Journal, 24(5), 619-641. doi: 10.1108/MEQ-07-2012-0053
- Improta, G., Derrone, A., Russo, M. A., & Triassi, M. (2019). Health technology assessment (HTA) of optoelectronic biosensors for oncology by analytic hierarchy process (AHP) and Likert scale. BMC Medical Research Methodology, 19(1), 140. doi: 10.1186/s12874-019-0775-z
- Improta, G., et al. (2018). Use of the AHP methodology in system dynamics: Modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases. Mathematical Biosciences, 299, 19-27. doi: 10.1016/j.mbs.2018.03.004
- Isoke, J., & Van Dijk, M. P. (2014). Factors influencing selection of drinking water technologies for urban informal settlements in Kampala. Water and Environment Journal, 28(3), 423-433. doi: 10.1111/wej.12058
- Ivlev, I., Vacek, J., & Kneppo, P. (2015). Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty. European Journal of Operational Research, 247(1), 216-228. doi: 10.1016/j.ejor.2015.05.075
- Jiang, J., Jain, A., Lui, J., Garcia, J., & Limarta, S. (2015). Technology assessment of waste disposal technologies for Tillamook county. Portland International Conference on Management of Engineering and Technology (PICMET), 408-421. doi: 10.1109/PICMET.2015.7273110.
- Jin, Z., & Gambatese, J. (2020). A Fuzzy Multi-Criteria Decision Approach to Technology Selection for Concrete Formwork Monitoring. Construction Research Congress 2020: Computer Applications - Selected Papers from the Construction Research Congress 2020, 76-85. doi: 10.1061/9780784482865.009
- Jurickova, I., & Kraina, A. (2014). Case study: Mobile X-ray equipment selection for a traumatology department using value engineering and multi-criteria decision methods. Proceedings IWBBIO 2014: International Work-Conference On Bioinformatics And Biomedical Engineering, 1-2, 1389-1402.
- Kafuku, J. M., Saman, M. Z. M., & Yusof, S. M. (2019). Application of Fuzzy Logic in Selection of Remanufacturing Technology. Procedia Manufacturing, 33, 192- 199. doi: 10.1016/j.promfg.2019.04.023
- Karatas, M., Karacan, I., & Tozan, H. (2018). An integrated multi-criteria decision making methodology for health technology assessment. European Journal of Industrial Engineering, 12(4), 504-534. doi: 10.1504/EJIE.2018.093637
- Karrer, L., Zhang, S. X., Kuhlein, T., & Kolominsky-Rabas, P. L. (2021). Exploring physicians and patients’ perspectives for current interventions on thyroid nodules using a MCDA method. Cost Effectiveness and Resource Allocation, 19(1), 26. doi: 10.1186/s12962-021-00279-3
- Karsak, E. E., & Ahiska, S. S. (2005). Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection. International Journal of Production Research, 43(8), 1537-1554. doi: 10.1080/13528160412331326478
- Kaur, G., et al. (2019). Criteria Used for Priority-Setting for Public Health Resource Allocation in Lowand Middle-Income Countries: A Systematic Review. International Journal of Technology Assessment in Health Care, 35(6), 474-483. doi: 10.1017/S0266462319000473
- Kelley, L. T., Egan, R., Stockley, D., & Johnson, A. P. (2018). Evaluating multi-criteria decision-making in health technology assessment. Health Policy and Technology, 7(3), 310-317. doi: 10.1016/j.hlpt.2018.05.002
- Kharat, M. G., Murthy, S., Kamble, S. J., & Kharat, M. G. (2020). Selecting sustainable technologies for municipal solid waste treatment and disposal: An expert based MCDM approach. Journal of Solid Waste Technology and Management, 46(1), 44-57. doi: 10.5276/JSWTM/2020.44
- Khatri, J., & Srivastava, M. (2016). Technology selection for sustainable supply chains. International Journal of Technology Management and Sustainable Development, 15(3), 275-289. doi: 10.1386/tmsd.15.3.275_1
- Kolasa, K., Zwolinski, K. M., Zah, V., Kalo, Z., & Lewandowski, T. (2018). Revealed preferences towards the appraisal of orphan drugs in Poland - multi criteria decision analysis. Orphanet Journal of Rare Diseases, 13, 67. doi: 10.1186/s13023-018-0803-9
- Kolli, S., & Parsaei, H. R. (1992). Multicriteria analysis in the evaluation of advanced manufacturing technology using PROMETHEE. Computers & Industrial Engineering, 23(1-4), 455-458. doi: 10.1016/0360-8352(92)90159-H
- Krishnan, V., & Bhattacharya, S. (2002). Technology selection and commitment in new product development: The role of uncertainty and design flexibility. Management Science, 48(3), 313-327. doi: 10.1287/mnsc.48.3.313.7728
- Kwon, S. H., Park, S. K., Byun, J. H., & Lee, E. K. (2017). Eliciting societal preferences of reimbursement decision criteria for anti cancer drugs in South Korea. Expert Review of Pharmacoeconomics & Outcomes Research, 17(4), 411-419. doi: 10.1080/14737167.2017.1277144
- Laba, T. L., Jiwani, B., Crossland, R., & Mitton, C. (2020). Can multi-criteria decision analysis (MCDA) be implemented into real-world drug decisionmaking processes? A Canadian provincial experience. International Journal of Technology Assessment in Health Care, 36(4), 434-439. doi: 10.1017/S0266462320000525
- Lasorsa, I., Padoano, E., Marceglia, S., & Accardo, A. (2019). Multi-criteria decision analysis for the assessment of non-clinical hospital services: Methodology and case study. Operations Research for Health Care, 23, 100171. doi: 10.1016/j.orhc.2018.08.002
- Li, Y., & Hu, Z. (2022). A review of multi-attributes decision-making models for offshore oil and gas facilities decommissioning. Journal of Ocean Engineering and Science, 7(1), 58-74. doi: 10.1016/j.joes.2021.05.002
- Liu, Y., & Du, J. L. (2020). A multi criteria decision support framework for renewable energy storage technology selection. Journal of Cleaner Production, 277, 122183. doi: 10.1016/j.jclepro.2020.122183
- Long, Y., Tang, M., & Liao, H. (2021). Renewable energy source technology selection considering the empathetic preferences of experts in a cognitive fuzzy social participatory allocation network. Technological Forecasting and Social Change, 175, 121317. doi: 10.1016/j.techfore.2021.121317
- Lootsma, F. A., Mensch, T. C. A., & Vos, F. A. (1990). Multi-criteria analysis and budget reallocation in long-term research planning. European Journal of Operational Research, 47, 295-305. doi: 10.1016/0377-2217(90)90216-X
- Lu, C., You, J. X., Liu, H. C., & Li, P. (2016). Health-Care Waste Treatment Technology Selection Using the Interval 2-Tuple Induced TOPSIS Method. International Journal of Environmental Research and Public Health, 13(6), 562. doi: 10.3390/ijerph13060562
- Ma, D., Chang, C.C., & Hung, S.W. (2013). The selection of technology for late-starters: A case study of the energy- smart photovoltaic industry. Economic Modelling, 35, 10-20. doi: 10.1016/j.econmod.2013.06.030
- Mall, S., & Anbanandam, R. (2022). A Fuzzy Analytic Hierarchy Process and VIKOR Framework for Evaluation and Selection of Electric Vehicle Charging Technology for India. Transportation in Developing Economies, 8(14). doi: 10.1007/s40890-022-00150-x
- Mardani, A., Jusoh, A., Halicka, K., Ejdys, J., Magruk, A. & Ahmad, U. (2018). Determining the utility in management by using multi-criteria decision support tools: a review. Economic Research- Ekonomska Istraživanja, 31(1),1666-1716. doi: 10.1080/1331677X.2018.1488600
- Marsh, K. D., Sculpher, M., Caro, J. J., & Tervonen, T. (2018). The Use of MCDA in HTA: Great Potential, but More Effort Needed. Value in Health, 21(4), 394- 397. doi: 10.1016/j.jval.2017.10.001
- Marsh, K., Caro, J. J., Zaiser, E., Heywood, J., & Hamed, A. (2018). Patient-centered decision making: lessons from multi-criteria decision analysis for quantifying patient preferences. International Journal of Technology Assessment in Health Care, 34(1), 105-110 doi: 10.1017/S0266462317001118
- Marsh, K., et al. (2014). Assessing the Value of Healthcare Interventions Using Multi-Criteria Decision Analysis: A Review of the Literature. Pharmacoeconomics, 32(4), 345-365. doi: 10.1007/s40273-014-0135-0
- Martelli, N., et al. (2016). Combining multi-criteria decision analysis and mini-health technology assessment: A funding decision-support tool for medical devices in a university hospital setting. Journal of Biomedical Informatics, 59, 201-208. doi: 10.1016/j.jbi.2015.12.002
- Meerholz, A., & Brent, A.C. (2012). Assessing the sustainability of wastewater treatment technologies in the petrochemical industry. 2012 IEEE International Technology Management Conference, ITMC 2012, 6306395, 387-392. doi: 10.1109/ITMC.2012.6306395
- Michalski, A., Głodziński, E. & Bӧde, K. (2022). Lean construction management techniques and BIM technology – systematic literature review. Procedia Computer Science, 196, 1036-1043. doi: 10.1016/j.procs.2021.12.107
- Mobinizadeh, M., et al. (2016). A model for priority setting of health technology assessment: the experience of AHP-TOPSIS combination approach. Daru-Journal of Pharmaceutical Sciences, 24, 10. doi: 10.1186/s40199-016-0148-7
- Montazeri, M. & Najjartabar Bisheh, M. (2017). Optimizing Technology Selection for Power Smart Grid Systems: a Case Study of Iran Power Distribution Industry (IPDI). Technology and Economics of Smart Grids and Sustainable Energy, 2. doi: 10.1007/s40866-017-0021-x
- Mpanang’ombe, W., Tilley, E., Zabaleta, I., & Zurbrügg, C. (2018). A biowaste treatment technology assessment in Malawi. Recycling, 3(4), 55. doi: 10.3390/recycling3040055
- Muerza, V. de Arcocha, D., Larrodé, E., & Moreno-Jiménez, J. M. (2014). The multicriteria selection of products in technological diversification strategies: An application to the Spanish automotive industry based on AHP. Production Planning & Control, 25(8), 715-728. doi: 10.1080/09537287.2013.798089
- Mühlbacher, A. C., & Juhnke, C. (2016). Involving patients, the insured and the general public in healthcare decision making [Patienten- und Bürgerpartizipation in der Entscheidungsfindung im Gesundheitswesen insbesondere bei der Bewertung von Arzneimitteln]. Zeitschrift fur Evidenz, Fortbildung und Qualitat im Gesundheitswesen, 110-111, 36-44. doi: 10.1016/j.zefq.2015.12.001
- Narayanamoorthy, S., et al. (2021). A new extension of hesitant fuzzy set: An application to an offshore wind turbine technology selection process. IET Renewable Power Generation, 15(11), 2340-2355 doi: 10.1049/rpg2.12168
- Nur, F., Burch, V. R. F. Marufuzzaman, M., & Smith, B. K. (2021). Handheld Technology Selection, Evaluation, and Risk Mitigation Using Stochastic Analytical Hierarchical Process: A Standardization of the Request for Proposal Process. Engineering Management Journal (Early Access). doi: 10.1080/10429247.2020.1847561
- Onar, S. C., Oztaysi, B., Otay, I., & Kahraman, C. (2015). Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy, 90, 274-285. doi: 10.1016/j.energy.2015.06.086
- Oortwijn, W., & Klein, P. (2019). Addressing Health System Values in Health Technology Assessment: The Use of Evidence-Informed Deliberative Processes. International Journal of Technology Assessment in Health Care, 35(2), 82-84. doi: 10.1017/S0266462319000187
- Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi: 10.1016/S0377-2217(03)00020-1
- Özkale, C., Celik, C., Turkmen, A. & Cakmaz, E. (2016). Decision analysis application intended for selection of a power plant running on renewable energy sources. Renewable and Sustainable Energy Reviews, 70. doi: 10.1016/j.rser.2016.12.006.
- Oztaysi, B. (2014). A decision model for information technology selection using AHP integrated TOPSISGrey: The case of content management systems. Knowledge-Based Systems, 70, 44-54. doi: 10.1016/j.knosys.2014.02.010
- Oztaysi, B., Cevik Onar, S., Kahraman, C., & Yavuz, M. (2017). Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. Transportation Research Part D: Transport and Environment, 53, 128-148. doi: 10.1016/j.trd.2017.04.003
- Peterseim, J. H., White, S., Tadros, A., & Hellwig, U. (2013). Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renewable Energy, 57, 520-532. doi: 10.1016/j.renene.2013.02.014
- Pohekar, S. D., & Ramachandran, M. (2004). Application of MCDM to sustainable energy planning – a review. Renewable Sustainable Energy Review, 8, 365-381. doi: 10.1016/j.rser.2003.12.007
- Ragavan, P., & Punniyamoorthy, M. (2003). A strategic decision model for the justification of technology selection. The International Journal of Advanced Manufacturing Technology, 21(1), 72-78. doi: 10.1007/s001700300008
- Ren, J., & Lützen, M. (2015). Fuzzy multi-criteria decisionmaking method for technology selection for emissions reduction from shipping under uncertainties. Transportation Research Part D: Transport and Environment, 40, 43-60. doi: 10.1016/j.trd.2015.07.012
- Rogalewicz, V., & Jurickova, I. (2014). Specificities of Medical Devices Affecting Health Technology Assessment Methodology. Proceedings IWBBIO 2014: International Work-Conference On Bioinformatics And Biomedical Engineering, 1-2, 1229-1234.
- Saaty, T. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. New York, USA: McGraw Hill.
- Saaty, T. (2005). The Analytic Hierarchy and Analytic Network Processes for the Measurement for Intangible Criteria and for Decision-Making. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple Criteria Decision Analysis. State of the Art Surveys, (pp. 345–408). New York, USA: Springer.
- Sadr, S. M. K., Onder, T., Saroj, D., & Ouki, S. (2013). Appraisal of membrane processes for technology selection in centralized wastewater reuse scenarios. Sustainable Environment Research, 23(2), 69-78.
- Saen, R. F. (2006). A decision model for technology selection in the existence of both cardinal and ordinal data. Applied Mathematics and Computation, 181(2), 1600-1608. doi: 10.1016/j.amc.2006.03.012
- Salamirad, A., Kheybari, S., Ishizaka, A., & Farazmand, H. (2021). Wastewater treatment technology selection using a hybrid multicriteria decision-making method. International Transactions in Operational Research, article in press. Retrieved from https://www.researchgate.net/publication/350691691_Wastewater_ treatment_technology_selection_using_a_hybrid_multicriteria_decision-making_method
- Santos, F. A., & Garcia, R. (2010). Decision process model to the Health Technology incorporation. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 5627344, 414-417. doi: 10.1109/IEMBS.2010.5627344
- Savun, B., Erbay, B., Hekimoglu, M., & Burak, S. (2020). Evaluation of water supply alternatives for Istanbul using forecasting and multi-criteria decision making methods. Journal of Cleaner Production, 287, 125080. 10.1016/j.jclepro.2020.125080
- Schmitz, S., et al. (2016). Identifying and Revealing the Importance of Decision-Making Criteria for Health Technology Assessment: A Retrospective Analysis of Reimbursement Recommendations in Ireland. Pharmacoeconomics, 34(9), 925-937. doi: 10.1007/s40273-016-0406-z
- Schneberger, J. H., Kaspar, J., & Vielhaber, M. (2019). Integrated and customer-oriented material and process selection by sensory multi-criteria decision-making. Proceedings of the International Conference on Engineering Design, ICED, 1(1), 1175-1184. doi: 10.1017/dsi.2019.123
- Scott, J. A., Ho, W., & Dey, P. K. (2012). A review of multicriteria decision-making methods for bioenergy systems, Energy, 42(1), 146-156. doi: 10.1016/j.energy.2012.03.074
- Shen, Y. C., Chang, S. H., Lin, G. T., & Yu, H. C. (2010). A hybrid selection model for emerging technology. Technological Forecasting and Social Change, 77(1), 151-166. doi: 10.1016/j.techfore.2009.05.001
- Si, J., Marjanovic-Halburd, L., Nasiri, F., & Bell, S. (2016). Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustainable Cities and Society, 27, 106-115. doi: 10.1016/j.scs.2016.06.013
- Siderska, J., & Jadaa, K. S. (2018). Cloud manufacturing: a service-oriented manufacturing paradigm. A review paper. Engineering Management in Production and Services, 10(1), 22-31. doi: 10.1515/emj-2018-0002
- Siemieniako, D., Kubacki, K., & Mitręga, M. (2021). Interorganisational relationships for social impact: A systematic literature review. Journal of Business Research, 132, 453-469. doi: 10.1016/j.jbusres.2021.04.026
- Singh, N., & Sushil (1990). Technology selection models for multi-stage production systems: Joint application of physical system theory and mathematical programming. European Journal of Operational Research, 47(2), 248-261. doi: 10.1016/0377-2217(90)90283-H
- Stojanovic, C., Bogdanovic, D., & Urošević, S. (2015). Selection of the optimal technology for surface mining by multi-criteria analysis. Kuwait Journal of Science, 42, 170-190.
- Štreimikiene, D. (2013). Assessment of energy technologies in electricity and transport sectors based on carbon intensity and costs. Technological and Economic Development of Economy, 19(4), 606-620. doi: 10.3846/20294913.2013.837113
- Streimikiene, D., & Balezentiene, L. (2012). Assessment of electricity generation technologies based on ghg emission reduction potential and costs. Transformations in Business and Economics, 11(2 A), 333-343.
- Streimikiene, D., Baležentis, T., & Baležentiene, L. (2013). Comparative assessment of road transport technologies. Renewable and Sustainable Energy Reviews, 20, 611-618. doi: 10.1016/j.rser.2012.12.021
- Sun, X., Yu, H., Solvang, W. D., Wang, Y., & Wang, K. (2022). The application of Industry 4.0 technologies in sustainable logistics: a systematic literature review (2012-2020) to explore future research opportunities. Environmental Science and Pollution Research, 29(7), 9560-9591. doi: 10.1007/s11356-021-17693-y
- Szpilko, D., & Ejdys, J. (2022). Europen Green Deal – research directions. Systematic literature review. Ekonomia i Srodowisko – Economics and Environment, 2(80), article in press.
- Szpilko, D., Szydło, J., & Winkowska, J. (2020). Social Participation of City Inhabitants Versus Their Future Orientation. Evidence from Poland. WSEAS Transactions on Business and Economics, 17, 692-702. doi: 10.37394/23207.2020.17.67
- Szum, K. (2021). IoT-based smart cities: a bibliometric analysis and literature review. Engineering Management in Production and Services, 13(2), 115-136. doi: 10.2478/emj-2021-0017
- Tal, O., Booch, M., & Bar-Yehuda, S. (2019). Hospital staff perspectives towards health technology assessment: data from a multidisciplinary survey. Health Research Policy and Systems, 17, 72. doi: 10.1186/s12961-019-0469-3
- Torkayesh, A. E., Malmir, B., & Rajabi Asadabadi, M. (2021). Sustainable waste disposal technology selection: The stratified best-worst multi-criteria decision-making method. Waste Management, 122, 100- 112. doi: 10.1016/j.wasman.2020.12.040
- Turschwell, M. P., et al. (2022). A review of support tools to assess multi-sector interactions in the emerging offshore Blue Economy. Environmental Science and Policy, 133, 203-214. doi: 10.1016/j.envsci.2022.03.016
- Tzeng, G. H., & Huang, J. J. (2011). Multiple Attribute Decision Making. Methods and Applications. London, UK: CRC Press.
- Tzeng, G. H., Lin, C. W., & Opricovic, S. (2005). Multicriteria analysis of alternative-fuel buses for public transportation. Energy Policy, 33(11), 1373-1383. doi: 10.1016/j.enpol.2003.12.014
- van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111, 1053-1070. doi: 10.1007/s11192-017-2300-7
- van Overbeeke, E., Forrester, V., Simoens, S., & Huys, I. (2021). Use of Patient Preferences in Health Technology Assessment: Perspectives of Canadian, Belgian and German HTA Representatives. Patient-Patient Centered Outcomes Research, 14(1), 119-128. doi: 10.1007/s40271-020-00449-0
- Villegas, L. V., Salgado, J., Perilla, S. P., & Melo, J. (2020). Characterization of Medical Equipment Acquisition Processes by Considering the Evaluation of Technology, Pilot Case: POCT Blood Gas Analyzers. IFMBE Proceedings, 75, 1398-1402. doi: 10.1007/978-3-030-30648-9_180
- Vinodh, S., Nagaraj, S., & Girubha, J. (2014). Application of Fuzzy VIKOR for selection of rapid prototyping technologies in an agile environment. Rapid Prototyping Journal, 20(6), 523-532. doi: 10.1108/RPJ-07-2012-0060
- Vivekh, P., Sudhakar, M., Srinivas, M., & Vishwanthkumar, V. (2016). Desalination technology selection using multi-criteria evaluation: TOPSIS and PROMETHEE- 2. International Journal of Low-Carbon Technologies, 12, ctw001. doi: 10.1093/ijlct/ctw001
- Wahlster, P. (2015). Exploring the perspectives and preferences for HTA across German healthcare stakeholders using a multi-criteria assessment of a pulmonary heart sensor as a case study. Health Research Policy and Systems, 13, 24. doi: 10.1186/s12961-015-0011-1
- Wang, G., Tian, X., & Geng, J. (2014). Optimal selection method of process patents for technology transfer using fuzzy linguistic computing. Mathematical Problems in Engineering, 13, 1-10. doi: 10.1155/2014/107108
- Winkowska, J., Szpilko, D., & Pejić, S. (2019). Smart city concept in the light of the literature review. Engineering Management in Production and Services, 11(2), 70-86. doi: 10.2478/emj-2019-0012
- Xiao, F. (2018) A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Engineering Applications of Artificial Intelligence, 71, 216-225. doi: 10.1016/j.engappai.2018.03.002
- Yalcin, A. S., Kilic, H. S., & Delen, D. (2022). The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technological Forecasting and Social Change, 174, 121193. doi: 10.1016/j.techfore.2021.121193
- Yimen, N., & Dagbasi, M. (2019). Multi-attribute decisionmaking: Applying a modified Brown–Gibson model and RETScreen software to the optimal location process of utility-scale photovoltaic plants. Processes, 7(8), 505. doi: 10.3390/pr7080505
- Zanakis, S. H., Solomon, A., Wishart N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research, 107(3), 507-529. doi: 10.1016/S0377-2217(97)00147-1
- Zelei, T., Mendola, N. D., Elezbawy, B., Nemeth, B., & Campbell, J. D. (2021). Criteria and Scoring Functions Used in Multi-criteria Decision Analysis and Value Frameworks for the Assessment of Rare Disease Therapies: A Systematic Literature Review. Pharmacoeconomics-Open, 5(4), 605-612. doi: 10.1007/s41669-021-00271-w
- Zhang, C. H., Chen, C., Streimikiene, D., & Balezentis, T. (2019). Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies. Applied Soft Computing, 79, 410-423. doi: 10.1016/j.asoc.2019.04.008
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae703fb4-a92c-4fce-9c34-1ba8fba01608