PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gene expression profiles have been recently used in survival analysis, tumor classification and ER status identification. The prediction of breast cancer recurrence based on gene expression profile has been regarded in some previous studies in which the procedures were based on the concept of regression functions and fuzzy systems. In this study, a method based on the combination of these two concepts is presented; not only a method for gene selection, but also a systematic way to create fuzzy rules are going to be offered. Due to the ability of type-2 fuzzy systems in handling of uncertain systems, the proposed model is developed to type-2. The results show that this model has been improved in comparison to previous ones.
Twórcy
  • Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran
  • Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran
Bibliografia
  • [1] van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530–6.
  • [2] Alba E, Garcia-Nieto J, Jourdan L, Talbi E. Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. IEEE Congress on Evolutionary Computation CEC 2007. 2007. pp. 284–90.
  • [3] Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, et al. Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 2004;64:8558–65.
  • [4] Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 2003;100:10393–8.
  • [5] West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 2001;98:11462–7.
  • [6] Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 2001;61:5979–84.
  • [7] Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–74.
  • [8] Chiu SH, Chen CC, Lin TH. Using support vector regression to model the correlation between the clinical metastases time and gene expression profile for breast cancer. Artif Intel Med 2008;44:221–31.
  • [9] Mahmoodian H. Predicting the continuous values of breast cancer relapse time by type-2 fuzzy logic system. Australasian Phys Eng Sci Med/Supported by the Australasian Coll Phys Scientists Med Australasian Assoc Phys Sci Med 2012;35:193–204.
  • [10] van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.
  • [11] Vapnik V, Golowich S, Smola A. Support vector method for function approximation regression estimation, and signal processing. Advances in neural information processing systems, vol 9. MIT Press; 1996. p. 281–7.
  • [12] Song M, Rajasekaran S. A greedy algorithm for gene selection based on SVM and correlation. Int J Bioinform Res Appl 2010;6:296–307.
  • [13] Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002;46:389–422.
  • [14] Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—I. Inform Sci 1975;8:199–249.
  • [15] Karnik NN, Mendel JM, Qilian L. Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 1999;7:643–58.
  • [16] Coupland S, John R. Geometric type-1 and Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 2007;15:3–15.
  • [17] Wagner C, Hagras H. Toward general type-2 fuzzy logic systems based on slices. IEEE Trans Fuzzy Syst 2010;18: 637–60.
  • [18] Mendel JM, Feilong L, Daoyuan Z. alpha-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 2009;17: 1189–207.
  • [19] Mendel JM, John RI, Feilong L. Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 2006;14:808–21.
  • [20] Karnik NN, Mendel JM. Centroid of a type-2 fuzzy set. Inform Sci 2001;132:195–220.
  • [21] Gruca A, Sikora M. Rule based functional description of genes – estimation of the multicriteria rule interestingness measure by the UTA method. Biocybern Biomed Eng 2013;33:222–34.
  • [22] Mahmoodian H, Hamiruce Marhaban M, Abdulrahim R, Rosli R, Saripan I. Using fuzzy association rule mining in cancer classification. Australasian Phys Eng Sci Med/ Supported by the Australasian Coll Phys Scientists Med Australasian Assoc Phys Sci Med 2011;34:41–54.
  • [23] Impact of gene expression profiling tests on breast cancer outcomes. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi? book=hserta&part=A257712.
  • [24] http://www.ncbi.nlm.nih.gov/geoprofiles/49709163.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae6dcc2d-1366-4489-91af-77357b50b73d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.