PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotating detonation: History, results, problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wirująca detonacja: historia, wyniki, problemy
Języki publikacji
EN
Abstrakty
EN
Among of modern papers devoted to numerical modeling of rotated waves the greater part of papers are based on assumption that such wave propagates with velocity equals to the Chapman-Jouguet velocity of ideal detonation model with plane front. But the experimental velocities of rotated detonation waves, as a rule, are less (and even much less) the velocity of ideal Chapman-Jouguet detonation. Such regimes are named as low-velocity detonation or quasi-detonation and its characteristics are practically not investigated carefully. Moreover, similar to the spinning detonation, the strong connection of velocity of rotated transverse waves with the acoustic waves of reaction products was observed. So the new model with an allowance for the losses of impulse and energy must be used at numerical modeling of RDE and new experimental investigations of regimes with understated velocity must be carried out. In given paper some important aspects of rotated detonation waves and new experimental results are analyzed: the multifront system of rotated waves; correlation of rotation velocity of waves with acoustic characteristics of reaction products; streak-records trajectory of rotated waves on moving film; pressure and temperature profiles of rotating waves; velocity deficit and energy-release.
PL
Wśród współczesnych prac poświęconych numerycznemu modelowaniu fal rotacyjnych większość prac opiera się na założeniu, że fala ta rozchodzi się z prędkością równą prędkości idealnego modelu detonacji z czołem płaskim Chapmana-Jougueta. Ale eksperymentalne prędkości wirujących fal detonacyjnych z reguły są mniejsze (a nawet znacznie mniejsze) od prędkości idealnej detonacji Chapmana-Jougueta. Takie działania nazywane są detonacją z małą prędkością lub quasi-detonacją, a ich charakterystyka nie jest dokładnie zbadana. Ponadto, podobnie jak w przypadku wirującej detonacji, zaobserwowano silny związek prędkości fal poprzecznych z falami akustycznymi produktów reakcji. Tak więc nowy model z uwzględnieniem strat impulsu i energii musi być zastosowany do modelowania numerycznego RDE i należy przeprowadzić nowe badania eksperymentalne o zaniżonej prędkości. W artykule przeanalizowano kilka ważnych aspektów wirujących fal detonacyjnych oraz nowe wyniki eksperymentalne: wieloczłonowy układ fal rotacyjnych; korelacja prędkości rotacji fal z charakterystyką akustyczną produktów reakcji; smuga rejestrująca trajektorię fal wirujących na poruszającej się kliszy; profile ciśnienia i temperatury fal wirujących; deficyt prędkości i uwolnienie energii.
Rocznik
Strony
48--60
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Lavrentyev Institute of Hydrodynamics SB RAS, Prospekt Akademika Lavrent'yeva, 15, Novosibirsk, Novosibirsk Oblast, 630090, Russia
  • Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Bibliografia
  • [1] Mallard, E., Le Chatelier, H., 1881, «Sur la vitesse de propagation del’inflammation dans les mélanges gazeux explosives,» Comptes-Rendus Academie des Sciences, Paris, France, 93, pp. 145-148.
  • [2] Berthelot, M. and Vieille, P., 1883, Ann. Chim. Phys., 5eme Ser, 28, pp. 289.
  • [3] Michelson, V. A., 1893, «About normal velocity of ignition of combustible gaseous mixture (in Russian), » Uchenie zapiski Imperatorskogo Moskovskogo Universiteta, otdel fizikomatematicheskii, vipusk 10, Moskva, Universitetskaya tipografiya.
  • [4] Chapman, D. L., 1899, “VI. On the rate of explosion in gases,”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(284), pp. 90-104.
  • [5] Jouguet, E., 1913, «Sur l’onde explosive, » CR Acad. Sci., Paris, 156, pp. 872-875.
  • [6] Campbell, C., Woodhead, D. W., 1927, “Striated photographic records of explosion waves,” Journal of Chemical Soc., pp. 1572-1578.
  • [7] Manson, N., 1947, «Propagation des detonations et des deflagrations dans les mélanges gazeux,» Dr. Sc. Thesis, University of Paris, ONERA and IFP, Paris.
  • [8] Voinov, A. N., 1950, “On the mechanism of formation of the spinning detonation (in Russian),” Doklady of the Academy of Sciences, USSR, 73, pp. 125-128.
  • [9] Voitsekhovsky, B. V., 1957, “On spinning detonation (in Russian),” Dokladi of the Academy of Sciences, USSR, 114, pp. 717-720.
  • [10] Voitsekhovsky, B. V., 1959, “Steady detonation (in Russian),” Dokladi of the Academy of Sciences, USSR, 129(6), pp. 1254-1259.
  • [11] Voitsekhovsky, B. V., Mitrofanov, V. V., Topchian, M. E., 1963, “Structure of the detonation front in gases (in Russian),” Izdatielstvo SB AN USSR, Novosibirsk.
  • [12] Zeldovich, Y. B., 1940, Zh. Exp. Teor. Fiz., 10(5), pp. 542-568. Also: English translation, NACA TN No. 1261 (1950).
  • [13] Bykovskii, F. A., Vasil’ev, A. A., Vedernikov, E. F., Mitrofanov, V. V., 1994, “Detonation burning of gas mixture in radial circled channels, “ Combustion, Explosions&Shock Waves, 30(4), pp. 111-118.
  • [14] Bykovskii, F. A., Zhdan, S. A., Vedernikov, E. F., 2006, ”Continuous Spin Detonations”, Journal of Propulsion and Power, 22(6), pp. 1204-1216. 10.2514/1.17656
  • [15] Bykovskii, F. A., Zhdan, S. A., 2013, “Continuous spinning detonation (on Russian),” Novosibirsk, izdatelstvo SB RAS, 423 pages.
  • [16] Wolanski, P., Kindracki, J., and Fujiwara, T., 2006, “An experimental study of small rotating detonation engine,” “Pulse and continuous detonation” (Edited by g. Roy, S. Frolov, J. Sinibaldi), M., Torus Press, pp. 332-338.
  • [17] Hishida, M., Fujiwara, T., Wolanski, P., 2009, ”Fundamental of rotating detonation”, Shock Waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.
  • [18] Fujiwara, T., Hishida, M., Kindracki, J., Wolanski, P., 2009, “Stabilization of detonation for any incoming mach numbers,” Combust Explos Shock Waves, 45, pp. 603-5. 10.1007/s10573-009-0072-y.
  • [19] Wolański, P., 2011, “Rotating detonation wave stability,” Proceedings of the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems. Irvine, California, USA.
  • [20] Kindracki, J., Kobiera, A., Wolański, P., Gut, Z., Folusiak, M., Swiderski, K., 2011, “Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures,” Prog. Propul. Phys., 2, pp. 555.
  • [21] Wolanski, P., 2013, “Detonative propulsion,” Proc Combust Inst., 34, pp. 125-58. 10.1016/j.proci.2012.10.005.
  • [22] Wolanski, P., 2015, “Application of the continuous rotating detonation to gas turbine,” Appl Mech Mater., 782, pp. 3-12. 10.4028/www.scientific.net/AMM.782.3.
  • [23] Tsuboi, N., Hayashi, A. K., 2006, “Numerical simulation of continuous spinning detonation in a circular tube,” In: “Pulsed and Continuous Detonations”, (Edited by g.Roy, S.Frolov, J.Sinibaldi), Torus Press Ltd., Moscow, pp. 186-192.
  • [24] Virot, F., Khasainov, B., Desbordes, D., and Presles, H.-N., 2007, “Spinning Detonation: Experiments and Simulations,” Proceedings 21st ICDERS, Poitiers, France.
  • [25] Levin, V. A., Manuylovich, I. S., Markov, V. V., 2015, “Formation of spin detonation in channels of circular cross section,” Doklady Phys., 60(2), pp. 85-88. 10.1134/S1028335815020093.
  • [26] Levin, V. A., Manuylovich, I. S., Markov, V .V., 2017, “Cellular and spin detonation in 3D channels,” 30th International Symp. on Shock Waves, 1, Springer Intern. Publishing., pp. 447-452. 10.1007/978-3-319-46213-4_76.
  • [27] Davidenko, D. M., Gokalp, I., Kudryabtsev, A. N., 2008, “Numerical study of the continuous detonation wave rocket engine,” AIAA 2008-2680, pp. 1-8.
  • [28] Shao, Y. T., Liu, M., Wang, J. P., Fujiwara, T., 2009, “Numerical investigation of continuous detonation engine,” Proceeding Intern. 22nd ICDERS, Minsk, Belarus, CD ROM, No. 12.
  • [29] Schwer, D., Kailasanath, K., 2011, “Numerical investigation of the physics of rotating detonation-engines,” Proc Combust Inst., 33, pp. 2195-202. 10.1016/j.proci.2010.07.050.
  • [30] Nakayama, H., Moriya. T., Kasahara, J., Matsuo, A., Sasamoto, Y., Funaki, I., 2012, “Stable detonation wave propagation in rectangular-cross-section curved channels,” Combust. Flame, 159, pp. 859-869. 10.1016/j.combustflame.2011.07.022.
  • [31] Vasil’ev, A. A., 2013, “The principal aspects of application of detonation in propulsion systems,” Journal of Combustion, 2013, Article ID 945161. 10.1155/2013/94516.
  • [32] Frolov, S. M., Dubrovskii, A. V., Ivanov, V. S., 2013, “Three-dimensional numerical simulation of operation process in rotating detonation engine,” Prog Propuls Phys., 4, pp. 467-88. 10.1051/eucass/201304467.
  • [33] Anand, V., and Gutmark, E., 2019, “Rotating detonation combustors and their similarities to rocket instabilities,” Progress in Energy and Combustion Science, 73, pp. 182-234.
Uwagi
1. The problems of detonation waves are included in the State Programme of Fundamental Investigations of Russian Federation. The investigations of such problems in Lavrentyev Institute of Hydrodynamics are supported by the government Department on Science and Education (gDSE): LIH project III.22.2.1 and grant of gDSE on Agreement No. 075-15-2020-806 (Contract No. 13.1902.21.0014).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae6aeaf4-e179-43fe-9d61-23c79c6198a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.