PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How to investigate and assess combination of hazards

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Operating experience from different types of industrial installations has shown that combinations of different types of different hazards occur during the entire lifetime of the installations. Typically site specific occurring hazards cause or induce other hazards to occur. In particular, natural hazards rarely happen alone. Thus, it is very important to note that almost any event combination of hazards is possible and that it is necessary to identify these interactions and find ways to mitigate the effects of hazard combinations. Therefore, it is a basic task to investigate and assess the relevant combination of hazards not only for a single installation but for the respective site/industrial park. In that context domino effects and cascade effects pose particular challenges for risk management to prevent industrial accidents.
Słowa kluczowe
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • Bundesamt für Strahlenschutz, Salzgitter, Germany
Bibliografia
  • [1] Abdolhamidzadeh, B., Abbasi, T. & Rashtchian, D., et. al. (2010). A new method for assessing domino effect in chemical process industry. Journal of Hazardous Materials 182, 1-3, 416426.
  • [2] Alileche, N., Cozzani, V., Reniers G., et. al. (2015). Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations. Reliability Engineering and System Safety 143, 74-84.
  • [3] Antonioni, G., Spadoni, G. & Cozzani, V. (2007). A methodology for the quantitative risk assessment of major accidents triggered by seismic events. Journal of Hazardous Materials 147, 1-2, 48-59.
  • [4] Bagster, D. F. & Pitblado, R. M. (1991). The Estimation of Domino Incident Frequencies-An Approach. Trans IChemE. 69, 195-199.
  • [5] Bagster, D. F. & Pitblado, R. M. (1991). Process Safety Environ. Protect 69.
  • [6] Berg, H. P., Röwekamp, M. & Fritze, N. et. al. (2016). Consideration of event combinations of fires and other events in Fire PRA - Insights from the OECD FIRE Database, PSAM13. Seoul.
  • [7] Cozzani V. et al. (2005). The assessment of risk caused by domino effect in quantitative area risk analysis. Journal of Hazardous Materials. 127, 14-30.
  • [8] Darbra, R. M., Palacios, A. & Casal, J. (2010). Domino effect in chemical accidents: main features and accident sequences. Journal of Hazardous Materials 183, 1-3, 565-573.
  • [9] Delvossalle, C. (1996). Domino Effects Phenomena: Definition, Overview and Classification. First European Seminar on Domino Effects. Leuven, Belgium, Federal Ministry of Employment, Safety Administration, Direction Chemical Risks, Brussels, Belgium, 515.
  • [10] Eisenberg, N. A., Lynch, C. J. & Breeding, R. J. (1975). Vulnerability Model: A Simulation System for Assessing Damage Resulting from Marine Spills. Report CG-D-136-75, Enviro Control Inc., Rockville, MD.
  • [11] European Commission. (2010). Risk assessment and mapping guidelines for disaster management. Brussels.
  • [12] Garcia-Aristizabal, G. et al. (2013). Dynamic scenario concept models. CRISMA project of EU.
  • [13] Hemmatian, B., Abdolhamidzadeh, B. & Darbra, R. M. et al. (2014). The significance of domino effect in chemical accidents. Journal of Loss Prevention in the Process Industries 29, 30-38.
  • [14] Janssens, J., Talarico, L. & Reniers, G. et al. (2015). A decision model to allocate protective safety barriers and mitigate domino effects. Reliability Engineering and System Safety 143, 44-52.
  • [15] Kadri, F. & Chatelet, E. (2013). Domino Effect Analysis and Assessment of Industrial Sites: A Review of Methodologies and Software Tools. International Journal of Computers and Distributed Systems. HAL-ID: hal-01026495, 110.
  • [16] Kadri, F., Chatelet, E. & Chen, G. et al. (2011). Method for Quantitative Assessment of Domino Effect Caused by Heat Radiation in Industrial Sites. International Conference on Risk Analysis (ICRA4). Limassol, Cyprus, 1-8.
  • [17] Kadri, F., Châtelet, E. & Chen, G. (2012). Quantitative Risk Assessment of Domino Effect Caused by Heat Load. Int. J. Syst. Control 3, 4248.
  • [18] Kadri, F., Lallement, P. & Chatelet, E. (2012). The Quantitative Risk Assessment of domino effect on Industrial Plants Using Colored Stochastic Petri Nets. PSAM11 & ESREL Conference. Helsinki, Finland.
  • [19] Kadri, F., Chatelet, E. & Lallement, P. (2013). The Assessment of Risk Caused by Fire and Explosion in Chemical Process Industry: A Domino Effect-Based Study. J. Risk Anal. Crisis Response 3, 66-76.
  • [20] Kadri, F., Châtelet, E. & Chen, G. (2013). Method for quantitative assessment of the domino effect in industrial sites. Process Saf. Environ. Prot 91, 452-462.
  • [21] Kadri, F., Birregah, B. & Châtelet, E. (2014). Natural Disaster Impacts on Critical Infrastructures: A domino effect-based study. Journal of Homeland Security and Emergency Management 11, 2, 217-241.
  • [22] Kappes, M., Keiler, M. & Elverfeldt, K. et al. (2012). Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 2, 1925-1958.
  • [23] Khakzad, N., Khan, F. & Amyotte, P. et al. (2013). Domino effect analysis using Bayesian networks. Risk Analysis. 233, 2, 292-306.
  • [24] Khan F.I. & Abbasi S.A. (1998). Models for domino effect analysis in chemical process industries. Process Safety Progress-AIChE 17, 2, 107-113.
  • [25] Khan, F. I. & Abbasi, S. A. (2001). An assessment of the likelihood of occurrence, and the damage potential of domino effect (chain of accidents) in a typical cluster of industries. Journal of Loss Prevention in the Process Industries 14, 4, 283-306.
  • [26] Khan, F. I. & Abbasi, S. A. (2002). Criterion for developing credible accident scenarios for risk assessment. Journal of Loss Prevention in the Process Industries 15, 6, 467-475.
  • [27] Kloos, J., Asare-Kyei, D. & Pardoe, J. et al. (2015). Towards the Deveopment of an Adapted Multi-hazard Risk Assessment Framework for the West Sudanian Savanna Zone. UNU-EHS Publication Series 11, 1-37.
  • [28] Krausmann, E. & Mushtaq F. (2008). A qualitative Natech damage scale for the impact of floods on selected industrial facilities. Natural Hazards 46, 2, 179-197.
  • [29] Kunz, M. et al. (2013). Investigation of Superstorm Sandy 2012 in a multi-disciplinary approach. Natural Hazards and Earth System Sciences 13, 2579-2598.
  • [30] Labath, N. A. & Amendola, A. (1989). Analysis of domino effect incident scenarios by the DYLAM approach. 6th International Symposium on Loss Prevention and Safety Promotion in the Process Industries. Oslo, Norway. 12-22.
  • [31] Landucci, G., Gubinelli, G. & Antonioni, G. et al. (2009). The assessment of the damage probability of storage tanks in domino events triggered by fire. Accident Analysis and Prevention 41, 6, 1206-1215.
  • [32] Larsen, R.G., Wood, M. & Olsen, A.L. et al. (2012). Seveso inspection series. Chemical hazards risk management in industrial parks and domino effect establishments. Luxembourg Publications Office of the European Union. 5.
  • [33] Latha, P., Gautam, G. & Raghavan, K. V. (1992). Strategies for Quantification of Thermally Initiated Cascade Effects. Journal of Loss Prevention Process Industries 5, 1, 15-21.
  • [34] Little, R.G. (2002). Controlling cascade failure: understanding the vulnerabilities of interconnected infrastructures. Journal of Urban Technology 9, 1, 109-123.
  • [35] Liu, B., Siu, Y.L. & Mitchell, G. (2016). Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment. Nat. Hazards Earth Syst. Sci 16, 629-642.
  • [36] Marzocchi, W., Mastellone, M.L. & Ruocco A.Di. et al. (2009). Principles of multi-risk assessment. Interaction amongst natural and man-induced risks. Project Report. FP6 SSA Project: Contract. 511264.
  • [37] Mohaghegh, Z. & Mosleh, A. (2009). Incorporating organizational factors into probabilistic risk assessment of complex sociotechnical systems: Principles and theoretical foundations. Safety Science 47, 139-1158.
  • [38] Necci, A. (2015). Cascading events triggering industrial accidents: quantitative assessment of NaTech and domino scenarios. PhD thesis, Alma Mater Studiorum Università di Bologna.
  • [39] Perilhon, P. (2000). MOSAR, Traité sécurité et gestion des risques, Techniques de l'ingénieur SE 4 060, 1-16.
  • [40] Pescaroli, G. & Alexander, D. (2015). A definition of cascading disasters and cascading effects. Going beyond the “toppling dominos” metaphor. Planet@Risk. Davos: Global Risk Forum GRF Davos 2, 3, 58-67.
  • [41] Pescaroli, G & Alexander, D. (2016). Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Natural Hazards 82, 1, 175-192.
  • [42] Reniers, G. (2010). An external domino effects investment approach to improve cross-plant safety within chemical clusters. J. Hazard. Mater 177, 167.
  • [43] Renni, E., Antonioni, G. & Bonvicini, S. et. al. (2009). A novel framework for the quantitative assessment of risk due to major accidents triggered by lightning. Chemical Engeneering Transactions 17, 311-316.
  • [44] Scilly, N. F. & Crowther, J. H. (1992). Methodologies for Predicting Domino Effects from Pressure Vessel Fragmentation. International Conference on Hazard Identification and Risk Analysis, Human Factors and Human Reliability in Process Safety. Florida, CCPS, AIChE, 15-17.
  • [45] Sun, D., Huang, G. & Jiang, J. et al. (2013). Study on the Rationality and Validity of Probit Models of Domino Effect to Chemical Process Equipment caused by Overpressure. Journal of Physics. IOP Publishing, 423, 012002.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae5d357e-232a-42bf-96e0-1b8566ee3376
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.