PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Molecular Dynamic Simulations of a Simplified Nanofluid

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study describes the methodology that was developed to run a Molecular Dynamics Simulation (MDS) code to simulate the behaviour of a single nanoparticle dispersing in a fluid with a temperature gradient. A soft disk model described by the Lennard-Jones potential is used to simulate the system. The nanoparticle is assembled via the use of four subdomains of interatomic interactions and hence presents in full resolution the transfer of energy from the fluid-to-solidto- fluid subdomains. A cluster computing system (HTCondor) was used to perform a large scale deployment of the MDS code. The obtained showcase results were successfully evaluated using three widely documented tests from the associated literature (Randomness, Radial Distribution and Velocity Autocorrelation Distribution Functions). It was discovered that the nanoparticle travels a larger distance in the fluid than the distance travelled by a fluid molecule (recovery region). The findings were confirmed by calculating the Green-Kubo self-diffusivity coefficient halfway through the simulation at which an enhancement of 156% was discovered in favour of the Nanoparticle. This might be the physical mechanism responsible for the experimentally observed thermal performance enhancement in nanofluids.
Słowa kluczowe
Twórcy
autor
  • The Department of Mechanical Engineering Imperial College London, London SW7 2AZ, UK
  • The Department of Mechanical Engineering Imperial College London, London SW7 2AZ, UK
Bibliografia
  • [1] S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology. John Wiley & Sons, Inc. NJ, USA 2007.
  • [2] A. Sergis, Y. Hardalupas, Anomalous heat transfer modes of nanofluids: a review based on statistical analysis, Nanoscale Research Letters 6, 391 (2011).
  • [3] Y. Xuan, Z. Yao, Lattice Boltzmann model for nanofluids, Heat and Mass Transfer 41, 199-205 (2005).
  • [4] P. Warrier, A. Teja, Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles, Nanoscale Research Letters 6, 247 (2011).
  • [5] L. Vasiliev, E. Hleb, A. Shnip, D. Lapotko, Bubble generation in micro-volumes of “nanofluids”, International Journal of Heat and Mass Transfer 52, 1534-1539 (2009).
  • [6] S.C. Tzeng, C.W. Lin, K.D. Huang, Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheeldrive vehicles, Acta Mechanica 179, 11-23 (2005).
  • [7] S. Soltani, S.G. Etemad, J. Thibault, Pool boiling heat transfer performance of Newtonian nanofluids, Heat and Mass Transfer 45, 1555-1560 (2009).
  • [8] J.N.N. Quaresma, E.N. Macedo, H.M. Da Fonseca,H.R.B. Orlande, R.M. Cotta, An Analysis of Heat Conduction Models for Nanofluids, Heat Transfer Engineering 31, 1125-1136 (2010).
  • [9] S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for the effective thermal conductivity of nanofluids, Applied Thermal Engineering 29, 2477-2483 (2009).
  • [10] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences 47, 560-568 (2008).
  • [11] H. Kim, M. Kim, Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids, Heat and Mass Transfer 45, 991-998 (2007).
  • [12] P. Keblinski, R. Prasher,J. Eapen, Thermal conductance of nanofluids: is the controversy over? Journal of Nanoparticle Research 10, 1089-1097 (2008).
  • [13] J.-Y. Jung, J.Y. Yoo, Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL), International Journal of Heat and Mass Transfer, 52, 525-528 (2009).
  • [14] K.S. Hwang, S.P. Jang, S.U.S. Choi, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, International Journal of Heat and Mass Transfer 52, 193-199 (2009).
  • [15] F. Duan, D. Kwek, A. Crivoi, Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids, Nanoscale Research Letters 6, 248 (2011).
  • [16] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer 49, 240-250 (2006).
  • 124 A. Sergis and Y. Hardalupas [17] W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model Journal of Nanoparticle Research 6, 355-361 (2004).
  • [18] W. Yu, S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, Journal of Nanoparticle Research 5, 167-171 (2003).
  • [19] S. Jain, H.E. Patel, S.K. Das, Brownian dynamic simulation or the prediction of effective thermal conductivity of nanofluid, Journal of Nanoparticle Research 11, 767-773 (2008).
  • [20] W. Cui, M. Bai, J. Lv, L. Zhang, G. Li, M. Xu, On the flow characteristics of nanofluids by experimental approach and molecular dynamics simulation, Experimental Thermal and Fluid Science 39, 148-157 (2012).
  • [21] G. Chen, W. Yu, D. Singh, D. Cookson, J. Routbort, Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids, Journal of Nanoparticle Research 10, 1109-1114 (2008).
  • [22] P. Bhattacharya, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, Journal of Applied Physics 95, 6492 (2004).
  • [23] D.C. RapaportC, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge 1995.
  • [24] D.M. Heyes, M.J. Nuevo, J.J. Morales, Self-diffusion of large solid clusters in a liquid by molecular dynamics simulation, Molecular Physics 88, (1996).
  • [25] Y. Hardalupas, S. Horender, Fluctuations of particle concentration in a turbulent two-phase shear layer, International Journal of Multiphase Flow 29, 1645-1667 (2003).
  • [26] J.K. Eaton, J.R. Fessler, Preferenctial Conventration of particles by turbulence, International Journal of Multiphase Flow 20, 169-209 (1994).
  • [27] M. Bamdad, S. Alavi, B. Najafi, E. Keshavarzi: A new expression for radial distribution function and infinite shear modulus of Lennard-Jones fluids, Chemical Physics 325, 554-562 (2006).
  • [28] V.I. Korsunskii, R. Neder, K. Hradil, J. Neuefeind, K. Barglik-Chory, G. Miller, Investigation of the local structure of nanosized CdS crystals stabilized with glutathione by the radial distribution function method, Journal of Structural Chemistry 45, 427-436 (2004).
  • [29] D.S.Wilson, L.L. Lee, Molecular recognition and adsorption equilibria in starburst dendrimers: gas structure and sensing via molecular theory, Fluid Phase Equilibria 228-229, 197-205 (2005).
  • [30] M.H. Kowsari, S. Alavi, M. Ashrafizaadeh, B. Najafi, Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient, The Journal of Chemical Physics, 129, 224508-224508 (2008).
  • [31] V.Y. Rudyak, S.L. Krasnolutskii, D.A. Ivanov, Molecular dynamics simulation of nanoparticle diffusion in dense fluids, Microfluidics and Nanofluidics 11, 501-506 (2011).
  • [32] V.Y. Rudyak, A.A. Belkin, Self-diffusion and viscosity coefficient of fluids in nanochannels, 3rd Micro and Nano Flows Conference, Thessaloniki, 22-24 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae5cea51-cdc3-4453-a2cd-f40aed1ff476
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.