PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Co-occurrence probability of water balance elements in a mountain catchment on the example of the upper Nysa Kłodzka River

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conditions of the formation of key elements of the water balance, such as precipitation and runoff, and relations between them in the mountain catchment area are very complicated, conditioned both by the climatic factor and the physiographic characteristics of the catchment area. The aim of the study is to determine relations between precipitation and runoff in the Kłodzka Valley (KV) located in mountain areas of south-western Poland. Analyzes were based on precipitation in KV and discharges of the Nysa Kłodzka River and its tributaries, recorded in hydrological years 1974–2013. The bivariate Archimedean copulas were used to describe the degree of synchronicity between these variables. The study area shows a considerable variability in the conditions of transformation of precipitation into runoff. It is conditioned both by the pluvial regime and the physical-geographical characteristics of the catchment area. As a result, sub-catchments with diversified hydrological activity and their role in the formation of water resources of the entire KV were identified. Among them, the Biała Lądecka River sub-catchment was found to be the most hydrologically active, and the sub-catchment of Bystrzyca Dusznicka River the most inert, despite e.g. quite similar synchronicity of precipitation compared to the average precipitation in KV. At the same time, the KV rivers are characterized by different types of runoff regime and characteristic of the water balance structure. The methodology presented can be useful in determining dependencies between selected elements of the water balance and evaluation of water resources availability in source areas of mountain rivers.
Czasopismo
Rocznik
Strony
1301--1315
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Department of Hydrology and Water Management, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Bogumiła Krygowskiego str. 10, 61-680 Poznań, Poland
  • Department of Hydrology and Water Management, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Bogumiła Krygowskiego str. 10, 61-680 Poznań, Poland
  • Department of Hydrology and Water Management, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Bogumiła Krygowskiego str. 10, 61-680 Poznań, Poland
Bibliografia
  • 1. Abdollahi K, Bazargan A, McKay G (2019) Water balance models in environmental modeling. In: Hussain CM (ed) Handbook of environmental materials management 2019. Springer, Cham, pp 1961–1976. https://doi.org/10.1007/978-3-319-73645-7_119
  • 2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/tac.1974.1100705
  • 3. Becker A (2005) Runoff processes in mountain headwater catchments: recent understanding and research challenges. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions advances in global change research 2005, vol 23. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3508-X_29
  • 4. Bednorz E, Wrzesiński D, Tomczyk AM, Jasik D (2019) Classification of synoptic conditions of summer floods in polish sudeten mountains. Water 11:1450. https://doi.org/10.3390/w11071450
  • 5. Biemans H, Siderius C, Lutz AF, Nepal S, Ahmad B, Hassan T, von Bloh W, Wijngaard RR, Wester P, Shrestha AB, Immerzeel WW (2019) Importance of snow and glacier meltwater for agriculture on the Indo–Gangetic Plain. Nat Sustain 2:594–601. https://doi.org/10.1038/s41893-019-0305-3
  • 6. Brown JL (2020) Machisplin, https://jasonleebrown.github.io/machisplin/
  • 7. Chen J, Gu SX, Zhang T (2018) Synchronous-asynchronous encounter probability analysis of high-low runoff for Jinsha River, China, using Copulas. MATEC Web Conf 246:01094. https://doi.org/10.1051/matecconf/201824601094
  • 8. Chubb TH, Manton MJ, Siems ST, Peace AD (2016) Evaluation of the AWAP daily precipitation spatial analysis with an independent gauge network in the Snowy Mountains. J South Hemisph Earth Syst Sci 66:55. https://doi.org/10.1071/ES16006
  • 9. Dynowska I, Pociask-Karteczka J (1999) Water cycle. In: Starkel L (ed) Geography of Poland. Natural Environment. Wyd. Nauk. PWN, Warszawa (In Polish)
  • 10. Erxleben J, Elder K, Davis R (2002) Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol Process 16:3627. https://doi.org/10.1002/hyp.1239
  • 11. Fan LL, Wang HR, Wang Ch, Lai WL, Zhao Y (2017) Exploration of use of copulas in analysing the relationship between precipitation and meteorological drought in Beijing China. Adv Meteorol 2017:1–11. https://doi.org/10.1155/2017/4650284
  • 12. Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368. https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347)
  • 13. Gu H, Yu Z, Li G, Ju Q (2018) Nonstationary multivariate hydrological frequency analysis in the Upper Zhanghe River Basin China. Water 10:772. https://doi.org/10.3390/w10060772
  • 14. Guo A, Chang J, Wang Y, Huang Q (2016) Variations in the Runoff-Sediment Relationship of the Weihe River Basin Based on the Copula Function. Water 8:223. https://doi.org/10.3390/w8060223
  • 15. Guo B, Zhang J, Meng X, Xu T, Song Y (2020) Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci Rep 10:81. https://doi.org/10.1038/s41598-019-57078-3
  • 16. Jeziorska J, Niedzielski T (2018) Applicability of TOPMODEL in the mountainous catchments in the Upper Nysa Kłodzka River Basin (SW Poland). Acta Geophys 66:203–222. https://doi.org/10.1007/s11600-018-0121-6
  • 17. Kirchner JW (2016) Aggregation in environmental systems—part 1: seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol Earth Syst Sci 20:279–297. https://doi.org/10.5194/hess-20-279-2016
  • 18. Kondracki J (2013) Regional geography of Poland. Wyd. Nauk. PWN, Warszawa, Poland (In Polish)
  • 19. Łach J (2009) The history of floods in the Kłodzko Land and their impact on the direction of transformation of the valley bottoms of the Nysa Kłodzka and Biała Lądecka Rivers. Nauka Przyr Technol 3:93 (In Polish)
  • 20. Łach J (2012) The role of torrential rains and floods in modeling the relief of the Kłodzka Valley and the Western Mountain Ranges of the Eastern Sudetes. Inst. Geogr. i Rozw. Reg. UWr, Wrocław, Poland. ISBN 978-83-62673-24-7 (In Polish)
  • 21. Ly S, Charles C, Degré A (2013) Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review. Biotechnol Agron Soc Environ 17(2):392–406
  • 22. Nelsen RB (1999) An introduction to Copulas. Springer, New York
  • 23. Niedzielski T, Miziński B (2017) Real-time hydrograph modelling in the Upper Nysa Kłodzka River Basin (SW Poland): a two-model hydrologic ensemble prediction approach. Stoch Environ Res Risk Assess 31:1555–1576. https://doi.org/10.1007/s00477-016-1251-5
  • 24. Olichwer T (2018) Long-term variability of water resources in mountainous areas: case study—Klodzko Region (SW Poland). Carpathian J Earth Environ Sci 14:29–38. https://doi.org/10.26471/cjees/2019/014/055
  • 25. Osuch B, Gądek W, Homa A, Cebulska M, Szczepanek R, Hebda-Małocha A (2009) Methods of estimating the elements of water balance in a forested catchment basin. J Water Land Dev. 13:19–40. https://doi.org/10.2478/v10025-010-0017-6
  • 26. Perz A (2019) Characteristics of the flow regime of the Kłodzka Valley Rivers. Badania Fizjograficzne Seria A Geografia Fizyczna 70:65–83. https://doi.org/10.14746/bfg.2019.10.6 (In Polish)
  • 27. Perz A, Sobkowiak L, Wrzesiński D (2020) Spatial differentiation of the maximum river runoff synchronicity in the Warta River Catchment. Poland Water 12:1782. https://doi.org/10.3390/w12061782
  • 28. Perz A, Sobkowiak L, Wrzesiński D (2021) Probabilistic approach to precipitation-runoff relation in a mountain catchment: a case study of the Kłodzka Valley in Poland. Water 13:1229. https://doi.org/10.3390/w13091229
  • 29. Plewa K, Perz A, Wrzesiński D, Sobkowiak L (2019) Probabilistic assessment of correlations of water levels in Polish Coastal Lakes with sea water level with the application of Archimedean copulas. Water 11:1292. https://doi.org/10.3390/w11061292
  • 30. Regional Water Management Authority (RZGW) in Wrocław (2013) Development of the Nysa Kłodzka River Balance Catchment Characteristics. (In Polish) https://wroclaw.rzgw.gov.pl/files_mce/Planowanie%20w%20gospodarowaniu%20wodami/charakterystyka_nysa_klodzka.pdf. Accessed 15 May 2021
  • 31. Rutkowska A, Willems P, Niedzielski T (2016) Relation between design floods based on daily maxima and daily means: use of the peak over threshold approach in the Upper Nysa Kłodzka Basin (SW Poland). Geomat Nat Hazards Risk 8:585–606. https://doi.org/10.1080/19475705.2016.1250114
  • 32. Shiklomanov IA (2001) World water balance. In: Shiklomanov IA (ed.) UNESCO—Encyclopedia Life Support Systems (UNESCO-EOLSS). Eolss Publishers, Paris, France. https://www.eolss.net
  • 33. Sklar A (1959) Fonction de re Partition an Dimensions et Leurs Marges. Publications de L´Institute de Statistique de l’Université de Paris. Paris, France 8:229–231
  • 34. Sobkowiak L, Perz A, Wrzesiński D, Faiz MA (2020) Estimation of the river flow synchronicity in the Upper Indus River Basin Using Copula Functions. Sustainability 12:5122. https://doi.org/10.3390/su12125122
  • 35. Staffa M (1993) Dictionary of tourist geography of the Sudetes. Vol. 15: The Kłodzko Valley and the Upper Nysa Trench. I-BiS, Wrocław, 315–318 (In Polish)
  • 36. Stauffer B (2013) Water Balance Estimation. https://sswm.info/sswm-university-course/module-4-sustainable-water-supply/further-resources-water-sources-software/water-balance-estimation. Accessed on 16 May 2021
  • 37. Stodolak R, Baran J, Knap E (2018) Influence of the assumed time distributions of rain variability on the results of rainfall-runoff modeling. Inż Ekol 19:87–93. https://doi.org/10.12912/23920629/95271 (In Polish)
  • 38. Szalińska W, Urban G, Otop I (2008) Assessment of precipitation volumes causing summer floods in the Middle Odra River Basin. Infrastrukt Ekol Teren Wiej 9:227–238 (In Polish)
  • 39. Tani M (1996) An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent. J Hydrol 183(3–4):205–225. https://doi.org/10.1016/0022-1694(95)02983-4
  • 40. Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8:1017–1030. https://doi.org/10.5194/hess-8-1017-2004
  • 41. Viviroli D, Kummu M, Meybeck M, Kallio M, Wada Y (2020) Increasing dependence of lowland populations on mountain water resources. Nat Sustain 3:917–928. https://doi.org/10.1038/s41893-020-0559-9
  • 42. Wrona B (2008) Meteorological and Morphological Conditions of Extreme Precipitation in the Upper and Middle Odra River basin. Materiały Badawcze, Seria: Meteorologia 41; IMGW, Warszawa, Poland (In Polish)
  • 43. Wrzesiński D (2013) Uncertainty of flow regime characteristics of rivers in Europe. Quaest Geogr 32:43–53. https://doi.org/10.2478/quageo-2013-0006
  • 44. Wrzesiński D (2016) Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophys 64:1825–1839. https://doi.org/10.1515/acgeo-2016-0073
  • 45. Wrzesiński D (2021) Flow regime patterns and their changes. In: Zeleňáková M, Kubiak-Wójcicka K, Negm AM (eds) Management of water resources in Poland. Springer Water, Cham, pp 163–180. https://doi.org/10.1007/978-3-030-61965-7_9
  • 46. Xing ZQ, Yan DH, Zhang C, Wang G, Zhang DD (2015) Spatial characterization and bivariate frequency analysis of precipitation and runoff in the Upper Huai River Basin. China Water Resour Manag 29:3291–3304. https://doi.org/10.1007/s11269-015-0997-8
  • 47. You Q, Jiang H, Liu Y, Liu Z, Guan Z (2019) Probability analysis and control of river runoff–sediment characteristics based on pair-copula functions: the case of the Weihe River and Jinghe River. Water 11:510. https://doi.org/10.3390/w11030510
  • 48. Zhang Q, Wang B, Li H (2012) Analysis of asynchronism-synchronism of regional precipitation in inter-basin water transfer areas. Trans Tianjin Univ 18:384–392. https://doi.org/10.1007/s12209-012-1685-x
  • 49. Zhang J, Ding Z, You J (2014) The joint probability distribution of runoff and sediment and its change characteristics with multi-time scales. J Hydrol Hydromech 62:218–225. https://doi.org/10.2478/johh-2014-0024
  • 50. Zhang B, Wang S, Wang Y (2021) Probabilistic projections of multidimensional flood risks at a convection-permitting scale. Water Resour Res 57:e2020WR028582. https://doi.org/10.1029/2020WR028582
  • 51. Zhou NQ, Zhao L, Shen XP (2014) Copula-based probability evaluation of rich-poor runoff and sediment encounter in Dongting Lake Basin. Sci Geogr Sin 34:242–248. https://doi.org/10.13249/j.cnki.sgs.2014.02.242(InChinese)
  • 52. Zuecco G, Penna D, Borga M (2018) Runoff generation in mountain catchments: long-term hydrological monitoring in the Rio Vauz Catchment Italy. Cuadernos De Investigacion Geografica 44(2):397–428. https://doi.org/10.18172/cig.3327
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae5653a2-d61c-4c66-a13b-0276c205b4c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.