PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Volumes ratio optimization in a cascade anaerobic digestion system producing hydrogen and methane

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As focus of humans has turned to renewable energy, the role of anaerobic digestion has started to become economically viable. Reducing the volume of agro-wastes for the generation of gaseous and liquid fractions with energy carriers and valuable products is an enormous challenge. A two-stage anaerobic digestion process consisting of hydrogenic stage followed by methanogenic stage was studied in a laboratory scale. Five simple nonlinear models of this continuous cascade process were studied in order to determine the optimal ratio of working volumes of bioreactors, in view of maximising energy production. This ratio was reported for all adopted models. The optimal ratio (maximal energy production criterion) depends of the adopted mathematical model. Static characteristics of both bioreactors were obtained using Symbolyc toolbox of Matlab. Numerical experiments concerning dynamics of the main variables of both bioreactors for these models using Simulink of Matlab are performed for different step changes of the dilution rate of the first bioreactor, together with the influence of the substrate (acetate) inhibition for one of the models. The value of the constant of inhibition plays an important role on the admissible interval of the dilution rate. The developed idea could serve for optimally designed experiments of anaerobic digestion for production of hydrogen and methane from lignocelluloses wastes (wheat straw) in two phase process.
Rocznik
Strony
183--200
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 26, Sofia 1113, Bulgaria, phone: +359 2 9793188, +359 2 9793614, +359 2 9793167
  • The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 26, Sofia 1113, Bulgaria, phone: +359 2 9793188, +359 2 9793614, +359 2 9793167
  • The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 26, Sofia 1113, Bulgaria, phone: +359 2 9793188, +359 2 9793614, +359 2 9793167
Bibliografia
  • [1] Gerardi MH. The Microbiology of Anaerobic Digesters. New Jersey: John Wiley Sons, Inc.; 2003. ISBN: 0471250317. Available from: https://www.wiley.com/en-us/9780471206934.
  • [2] Li Q, Li Y. Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system from molasses wastewater. Water Sci Technol. 2019;79(2):270-7. DOI: 10.2166/wst.2019.042.
  • [3] Ausiello A, Micoli L, Turco M, Toscano G, Florio C, Pirozzi D. Biohydrogen production by dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria. Int J Hydrogen Energy. 2017;42(52):30599-612. DOI: 10.1016/j.ijhydene.2017.10.021.
  • [4] Pakarinen OM, Kaparaju PLN, Rintala JA. Hydrogen and methane yields of untreated, water-extracted and acid (HCl) treated maize in one- and two-stage batch assays. Int J Hydrogen Energy. 2011;36:14401-7. DOI: 10.1016/j.ijhydene.2011.08.028.
  • [5] Ruggeri B, Tommas T, Sanfilippo S. BioH2 & BioCH4 through Anaerobic Digestion (From research to full-scale applications). London: Springer-Verlag; 2015. Available from: https://www.springer.com/gp/book/9781447164302.
  • [6] Rafieenia R, Pivato A, Lavagnolo MC. Effect of inoculum pre-treatment on mesopphilic hydrogen and methane production from food waste using two-stage anaerobic digestion. Int J Hydrogen Energy. 2018;43:12013-22. DOI: 10.1016/j.ijhydene.2018.04.170.
  • [7] Dareioti MA, Kornaros M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour Technol. 2014;167:407-15. DOI: 10.1016/j.biortech.2014.06.045.
  • [8] Cavinato C, Bolzonella D, Faton F, Cecchi F, Pavan P. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol. 2011;102:8605-11. DOI: 10.1016/j.biortech.2011.03.084.
  • [9] Intanoo P, Rangsanvigit P, Malakul P, Chavadej S. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour Technol. 2014;173:256-65. DOI: 10.1016/j.biortech.2014.09.039.
  • [10] Schievano A, Tenca A, Lonati S, Manzini E, Adani F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl Energy. 2014;124:335-42. DOI: 10.1016/j.apenergy.2014.03.024.
  • [11] Khan MA, Ngo HH, Guo WS, Liu Y, Nghiem LD, Hai FI et al. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour Technol. 2016;219:738-48. DOI: 10.1016/j.biortech.2016.08.073.
  • [12] Chorukova E, Simeonov I. Mathematical modelling of the anaerobic digestion in two-stage system with production of hydrogen and methane including three intermediate products. Int J Hydrogen Energy. 2020;45:11550-8. DOI: 10.1016/j.ijhydene.2019.01.228.
  • [13] Blumensaat F, Keller J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No 1 (ADM1). Water Res. 2005;39(1):171-83. DOI: 10.1016/j.watres.2004.07.024.
  • [14] Hu M, Wang H, Tian Y, Christov N, Simeonov I. On the extremum-seeking control design and application for anaerobic digestion processes. Ecol Eng Environ Protect. 2019;2:23-8. Available from: http://ecoleng.org/archive/2019/2/23-28.pdf.
  • [15] Simeonov I, Diop S. Stability analysis of some nonlinear anaerobic digestion models. Int J Bioautomation. 2010;14(1):37-48. Available from: https://hal.archives-ouvertes.fr/hal-00544138.
  • [16] Borisov M, Dimitrova N, Simeonov I. Mathematical modelling and stability analysis of a two-phase biosystem. Processes. 2020;8(7):791. Available from: https://www.mdpi.com/2227-9717/8/7/791.
  • [17] Paolini V. Environmental impact of biogas: A short review of current knowledge. J Environ Sci Health. Part A. Toxic/Hazardous Substances Environ Eng. 2018;53(10):899-906. DOI: 10.1080/10934529.2018.1459076.
  • [18] Lara-Cisneros G, Aguilar-López R, Femat R. On the dynamic optimization of methane production in anaerobic digestion via extremum-seeking control approach. Computers Chem Eng. 2015;75:49-59. DOI: 10.1016/j.compchemeng.2015.01.018.
  • [19] Andrews JF. A mathematical model for the continuous culture of micro-organisms utilizing inhibitory substrate. Biotechnol Bioeng. 1968;10:707-23. DOI: 10.1002/bit.260100602.
  • [20] Shan-Fei F, Xiao-Hui X, Meng D, Xian-Zheng Y, Rong-Bo G. Hydrogen and methane production from vinasse using two-stage anaerobic digestion. Process Saf Environ Protect. 2017;107:81-6. DOI: 10.1016/j.psep.2017.01.024.
  • [21] Cecchi F, Cavinato C. Anaerobic digestion of bio-waste: A mini review focusing on territorial and environmental aspects. Waste Manage Res. 2015;33:429-38. DOI: 10.1177/0734242X14568610.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. The authors gratefully acknowledge the financial support for this work by the Bulgarian National Science Fund, Contract № KP-06-IP China/3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae5357b1-2893-4c2a-b615-de8e4f68dc92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.