Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mechanical vibration of plates have applications in many fields of science and industry including synthesis of artificial reverberation - one of the most important signal processors in audio engineering. The paper presents a concept for study and measurements of reverberating plates that contains an initial numerical solution with a goal of predicting behaviours of the vibrating plate as its response for physically affecting its vibration. The concept also considers experimental measurements of selected simplified solutions as well as their comparison with numerical simulation. In addition the paper contains evidence for perceptible differences between audio signals obtained from the initial experiments, which suggests the viability of adjustable mechanical reverberation mechanism. Moreover, the paper includes concept for test stand for experimental study of reverberating plates in order to achieve signals differing in perceptually significant way. The test stand and study will allow to increase knowledge of vibrating plates as parts of plate reverberation devices.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023204
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
autor
- AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
autor
- AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
Bibliografia
- 1. S. Bilbao; Numerical Sound Synthesis Acoustics and Fluid Dynamics Group/Music; University of Edinburgh, 2009
- 2. EMT Plate Reverberation Technical Instructions; Miscellaneous Sound Equipment - Section 1: Reverberation Plate EMT140; http://www.bbceng.info/ti/eqpt/EMT140.pdf (accessed on 2023.04.16)
- 3. J.S. Rao; Dynamics of Plates; CRC Press; 1998
- 4. T.D. Rossing, N. H. Fletcher; Nonlinear vibrations in plates and gongs; The Journal of the Acoustical Society of America, 1983, 73(1), 345-351; DOI: 10.1121/1.388816
- 5. P. M. Morse, K. U. Ingard; Theoretical Acoustics; Princeton University Press, 1987
- 6. R. Szilard; Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods; John Wiley & Sons Inc., 2004
- 7. D. Schaeffer, M. Golubitsky; Boundary Conditions and Mode Jumping in the Buckling of a Rectangular Plate; Communications in Mathematical Physics, 1979, 69(3), 209-236; DOI: 10.1007/BF01197444
- 8. M.A. Horn; Nonlinear boundary stabilization of a von Kármán plate via bending moments only. In System Modelling and Optimization; Springer, 1994, 197, 706-715; DOI: 10.1007/BFb0035520
- 9. J.E.M. Rivera, H. P. Oquendo, M. L. Santos; Asymptotic behavior to a von Kármán plate with boundary memory conditions; Nonlinear Analysis: Theory, Methods & Applications, 2005, 62(7), 1183-1205; DOI: 10.1016/j.na.2005.04.025
- 10. L. Majkut, R. Olszewski; Zastosowanie radialnych funkcji bazowych do analizy drgań własnych płyty z otworami - Application of radial basis functions to dynamic analysis of a plate with holes; TTS. Technika Transportu Szynowego, 2015
- 11. L. Majkut, R. Olszewski; Zastosowanie radialnych funkcji bazowych do analizy drgań własnych płyty dwumateriałowej - Application of radial basis functions to dynamic analysis of a two material plate; TTS. Technika Transportu Szynowego, 2017
- 12. S. Ilanko; Vibration and Post-buckling of In-Plane Loaded Rectangular Plates Using a Multiterm Galerkin’s Method; Journal of Applied Mechanics, 2002, 69(5), 589-592; DOI: 10.1115/1.1489449
- 13. S. Bilbao, K. Arcas, A. Chaigne; A Physical Model of Plate Reverberation; In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2006
- 14. S. Bilbao; A Digital Plate Reverberation Algorithm; Journal of the Audio Engineering Society, 2007, 55(3), 135-144
- 15. M. Ducceschi, C. J. Webb; Plate reverberation: Towards the development of a real-time physical model for the working musician; Proceedings of the 22th International Congress on Acoustics, Buenos Aires, 2016, 5-9
- 16. M. Ducceschi; Digital plate reverb models; Conference presentation in: PON Seminars, Dept of Mathematics, University of Bologna, 2022
- 17. R. Russo; Physical Modeling and Optimisation of a EMT 140 Plate Reverb; Master’s Thesis, Aalborg University, 2021
- 18. M.A. Martínez Ramírez, E. Benetos, J. D. Reiss; Modeling Plate and Spring Reverberation Using A DSP-Informed Deep Neural Network; ICASSP 2020, 241-245; DOI: 10.1109/ICASSP40776.2020.9053093
- 19. S. Chakraverty; Vibration of Plates; Taylor&Francus Group, 2009
- 20. J. C. Middlebrooks, D. M. Green; Sound Localization by Human Listeners, Annual Review of Psychology, 1991, 42, 135-59; DOI: 10.1146/annurev.ps.42.020191.001031
- 21. A.J. Houtsma, J. Smurzynski; Pitch identification and discrimination for complex tones with many harmonics; The Journal of the Acoustical Society of America, 1990; DOI: 10.1121/1.399297
- 22. J. Blaauwendraad; Plates and FEM, Springer, 2010
- 23. P.K. Nkounhawa, D. Ndapeu; Analysis of the Behavior of a Square Plate in Free Vibration by FEM in Ansys; World Journal Of Mechanicsm, 2020, 10(2); DOI: 10.4236/wjm.2020.102002
- 24. C.E. Etin-osa, J. I. Achebo; Analysis of Optimum Butt Welded Joint for Mild Steel Components Using FEM (ANSYS); Advances in Applied Sciences, 2017, 2(6), 100-109; DOI: 10.11648/j.aas.20170206.12
- 25. M. Pluta, D. Tokarczyk, J. Wiciak; Application of a musical robot for adjusting guitar string re-excitation parameters in sound synthesis; Applied Sciences (Basel), 2022, 12(3); DOI: 10.3390/app12031659
- 26. R.S. Woollett; Transducer comparison methods based on the eletromechanical coupling-coefficient concept; IRE National Convention, 1957; DOI: 10.1109/IRENC.1957.199173
- 27. M. Zollner; Physics of the Electric Guitar; Manfred Zollner, 2005
- 28. M. Amabili; Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments; Dipartimento di Ingegneria Industriale, 2004, 82(31-32), 2587-2605; DOI: 10.1016/j.compstruc.2004.03.077
- 29. G.W. Weia, Y.B. Zhaoa, Y. Xiang; The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution; International Journal of Mechanical Sciences, 2001, 43(8), 1731-1746; DOI: 10.1016/S0020-7403(01)00021-2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae4ca9f8-8a68-4a21-8e8f-4a99da453162