PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Around and about an application of the GAMLSS package to non-stationary flood frequency analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The non-stationarity of hydrologic processes due to climate change or human activities is challenging for the researchers and practitioners. However, the practical requirements for taking into account nonstationarity as a support in decision-making procedures exceed the up-todate development of the theory and the of software. Currently, the most popular and freely available software package that allows for nonstationary statistical analysis is the GAMLSS (generalized additive models for location, scale and shape) package. GAMLSS has been used in a variety of fields. There are also several papers recommending GAMLSS in hydrological problems; however, there are still important issues which have not previously been discussed concerning mainly GAMLSS applicability not only for research and academic purposes, but also in a design practice. In this paper, we present a summary of our experiences in the implementation of GAMLSS to non-stationary flood frequency analysis, highlighting its advantages and pointing out weaknesses with regard to methodological and practical topics.
Czasopismo
Rocznik
Strony
885--892
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Askhar F, Mahdi S (2003) Comparison of two fitting methods for the log-logistic distribution. Water Resour Res 39(8):7–8
  • 2. Aucoin F (2015) FAdist: distributions that are sometimes used in hydrology. R package version 2.2. https://CRAN.R-project.org/package=FAdist. Accessed 20 Mar 2016
  • 3. Bayazit M (2015) Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environ Process 2(3):527–542. doi:10.1007/s40710-015-0081-7
  • 4. Becker M, Klößner S (2017) PearsonDS: Pearson distribution system. R package version 1.0. https://CRAN.R-project.org/package=PearsonDS. Accessed 20 Feb 2017
  • 5. Bulletin No. 15 (1969) A uniform technique for determining flood flow frequencies, Hydrology Committee of Water Resources Council
  • 6. Castellarin A, Kohnova S, Gaal L, Fleig A, Salinas JL, Toumazis A, Kjeldsen TR, Macdonald N (2012) Review of applied-statistical methods for flood-frequency analysis in Europe, NERC/centre for ecology & hydrology, Wallingford. (ESSEM COST Action ES0901)
  • 7. Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319. doi:10.1002/sim.4780111005
  • 8. Cunnane C (1989) Statistical distributions for flood frequency analysis, operational hydrol. Rep. No. 33 WMO-No. 718. World Meteorological Organization, Geneva
  • 9. Debele SE, Bogdanowicz E, Strupczewski WG (2017) A comparison of three approaches to non-stationary flood frequency analysis, Acta Geoph., this issue, submitted for publication
  • 10. Flood Studies Report (1975) 5 Volumes + maps. Natural Environment Research Council, London
  • 11. Galiano SGG, Gimenez PO, Osorio JDG (2015) Assessing nonstationary spatial patterns of extreme droughts from long-term high-resolution observational dataset on a semiarid basin (Spain). Water 7(10):5458–5473. doi:10.3390/w7105458
  • 12. Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. doi:10.18637/jss.v072.i08
  • 13. Guidelines for flood frequency analysis long measurement series of river discharge (2005) WMO/HOMS Component I81.3.01. http://www.wmo.int/pages/prog/hwrp/homs/Components/English/i81301.htm. Accessed Apr 2017
  • 14. Hastie TJ, Tibshirani RJ (1992) Generalized additive models, monographs on statistics and applied probability 43. Chapman & Hall/CRS, Boca Raton
  • 15. Hosking JRM, Wallis JR (1997) Regional frequency analysis, an approach based on L-moments. Cambridge University Press, New York
  • 16. Hudson IL, Rea A, Dalrymple ML, Eilers PHC (2008) Climate impacts on sudden infant death syndrome: a GAMLSS approach. In: Proceedings of the 23rd international workshop on statistical modelling. pp 277–280
  • 17. Jawitz JW (2004) Moments of truncated continuous univariate distribution. Adv Water Resour 27:269–281
  • 18. Kochanek K, Strupczewski WG, Bogdanowicz E, Feluch W, Markiewicz I (2013) Application of a hybrid approach in nonstationary flood frequency analysis—a Polish perspective. Nat Hazards Earth Syst Sci Discuss 1(5):6001–6024. doi:10.5194/nhessd-1-6001-2013
  • 19. Koutsoyiannis D (2006) Nonstationarity versus scaling in hydrology. J Hydrol 324:239–254
  • 20. Koutsoyiannis D (2013) Hydrology and change. Hydrol Sci J 58(6):1177–1197. doi:10.1080/02626667.2013.804626
  • 21. Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res 43(5):W05429. doi:10.1029/2006WR005592
  • 22. Langbein WB (1949) Annual floods and the partial-duration series. Trans Am Geophys Union 30(6):879–881
  • 23. Lins HF, Cohn TA (2011) Stationarity: wanted dead or alive? J Am Water Resour Assoc 47(3):475–480. doi:10.1111/j.1752-1688.2011.00542.xCrossRefGoogle Scholar
  • 24. López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17:3189–3203. doi:10.5194/hess-17-3189-2013
  • 25. Machado MJ, Botero BA, López J, Francés FA, Díez-Herrero BG (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19:2561–2576. doi:10.5194/hess-19-2561-2015
  • 26. Markiewicz I, Strupczewski WG, Kochanek K (2010) On accuracy of upper quantiles estimation. Hydrol Earth Syst Sci 14:2167–2175. doi:10.5194/hess-14-2167-2010
  • 27. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574
  • 28. Nelder JA, Wedderburn RWM (1972) Generalized linear model. J R Stat Soc Series A (General) 135(3):370–384
  • 29. Osorio JDG, Galiano SGG (2012) Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs). J Hydrol 450–451:82–92. doi:10.1016/j.jhydrol.2012.05.029
  • 30. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0
  • 31. Rasmussen PE (2001) Generalized probability weighted moments: application to the generalized Pareto distribution. Water Resour Res 17(6):1745–1751
  • 32. Regulation (2007) Ordinance of the Minister of the Environment of 20 April 2007 on the technical conditions to be met by hydrotechnical structures and their location. Journal of Laws No. 86 of 2007, item 57 (in Polish)
  • 33. Regulations for computation of the greatest annual discharges for given probability of occurrence to design engineering structures and technical equipment for water management in the field of hydraulic engineering (1969) Central Office of Water Management, Warsaw (in Polish)
  • 34. Rigby RA, Stasinopoulos DM (1996a) A semi-parametric additive model for variance heterogeneity. Statist Comput 6:57–65
  • 35. Rigby RA, Stasinopoulos DM (1996b) Mean and dispersion additive models. In: Hardle W, Schimek MG (eds) Statistical theory and computational aspects of smoothing. Physica-Verlag, Heidelberg, pp 215–230
  • 36. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. doi:10.1111/j.1467-9876.2005.00510
  • 37. Rigby RA, Stasinopoulos DM, Heller G, Voudouris V (2014) The distribution toolbox of GAMLSS. http://www.gamlss.org/wp-content/uploads/2014/10/distributions.pdf. Accessed 14 Apr 2016
  • 38. Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36. doi:10.1016/j.advwatres.2014.12.013
  • 39. Solomon S, Daniela JS, Todd JS, Murphy DM, Plattner G-K, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. PNAS 107(43):18354–18359. doi:10.1073/pnas.1006282107
  • 40. Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23(7):1–46
  • 41. Stasinopoulos DM, Rigby RA, Akantziliotou C (2008) Introductions on how to use the package in R, 2nd edn. http://www.gamlss.org/wp-content/uploads/2013/01/gamlss-manual.pdf. Accessed 16 Mar 2016
  • 42. Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling. Part II. Weighted least squares estimation. J Hydrol 248(1–4):143–151. doi:10.1016/S0022-1694(01)00398-5
  • 43. Strupczewski WG, Singh VP, Feluch W (2001a) Non-stationary approach to at-site flood frequency modelling. Part I. Maximum likelihood estimation. J Hydrol 248(1–4):123–142. doi:10.1016/S0022-1694(01)00397-3
  • 44. Strupczewski WG, Singh VP, Mitosek HT (2001b) Non-stationary approach to at-site flood frequency modelling. Part III. Flood analysis of Polish rivers. J Hydrol 248(1–4):152–167. doi:10.1016/S0022-1694(01)00399-7
  • 45. Strupczewski WG, Markiewicz I, Kochanek K, Singh VP (2008) Short walk into two-shape parameter flood frequency distributions. In: VP Singh (ed) Hydrology and hydraulics. Water Resources Publications, Littleton, pp 669–716
  • 46. Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34(10):612–618
  • 47. Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2011) On seasonal approach to flood frequency modelling, Part I: flood frequency analysis of Polish rivers. Hydrol Process 26:705–716. doi:10.1002/hyp.8179
  • 48. Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2015) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers. Acta Geoph 64(1):206–236. doi:10.1515/acgeo-2015-0070
  • 49. Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009a) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45:1–17
  • 50. Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009b) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266. doi:10.1029/2008WR007645
  • 51. Villarini G, Vecchi GA, Smith JA (2010a) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138:2681–2705
  • 52. Villarini G, Smith JA, Napolitano F (2010b) Nonstationary modelling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267
  • 53. Villarini G, Smith JA, Serinaldi F, Ntelekos AA, Schwarz U (2012) Analyses of extreme flooding in Austria over the period 1951–2006. Int J Climatol 32:1178–1192. doi:10.1002/joc.2331
  • 54. Vojejkov AD (1884) Climates of the globe and Russia in particular, St Petersburg
  • 55. Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sci 19:913–931. doi:10.5194/hess-19-913-2015
  • 56. Wallis JR, Matalas NC, Slack JR (1974) Just a moment! Water Resour Res 10(2):211–219. doi:10.1029/WR010i002p00211
  • 57. Zhang D, Yan D, Wang YC, Lu F, Liu S (2015) GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China. Nat Hazards 77(2):1037–1053. doi:10.1007/s11069-015-1638-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae4923b5-7624-46a9-a1f4-047d00a11209
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.