PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the compressive strength of environmentally friendly concrete using artificial neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper evaluated the possibility of using artificial neural network models for predicting the compressive strength (Fc) of concretes with the addition of recycled concrete aggregate (RCA). The artificial neural network (ANN) approaches were used for three variable processes modeling (cement content in the range of 250 to 400 kg/m3, percentage of recycled concrete aggregate from 25% to 100% and the ratios of water contents 0.45 to 0.6). The results indicate that the compressive strength of recycled concrete at 3, 7 and 28 days is strongly influenced by the cement content, %RCA and the ratios of water contents. It is found that the compressive strength at 3, 7 and 28 days decreases when increasing RCA from 25% to 100%. The obtained MLP and RBF networks are characterized by satisfactory capacity for prediction of the compressive strength of concretes with recycled concrete aggregate (RCA) addition. The results in statistical terms; correlation coefficient (R) reveals that the both ANN approaches are powerful tools for the prediction of the compressive strength.
Słowa kluczowe
EN
Rocznik
Strony
68--81
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Faculty of Management, Department of Organisation of Enterprise, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, Department of Biomass and Waste Conversion into Biofuels, Poland
  • D. Serikbayev East Kazakhstan Technical University, School of Architecture and Construction, Kazakhstan
  • D. Serikbayev East Kazakhstan Technical University, School of Architecture and Construction, Kazakhstan
  • Lublin University of Technology, Faculty of Management, Department of Quantitative Methods in Management, Poland
Bibliografia
  • [1] Anysz, H., & Narloch, P. (2019). Designing the composition of cement stabilized rammed earth using artificial neural networks. Materials, 12(9), 1396. https://doi.org/10.3390/ma12091396
  • [2] Atici, U. (2011). Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Systems with Applications, 38(8), 9609–9618. https://doi.org/10.1016/j.eswa.2011.01.156
  • [3] British Standards Institution. (1988). British DOE (Department of Environment) Method (1988) Design of Normal Concrete Mixes.
  • [4] British Standards Institution. (2009). BS EN 12390-3:2009 Testing hardened concrete. Compressive strength of test specimens. https://bsol.bsigroup.com/en/Bsol-Item-Detail-Page/?pid=000000000030164906
  • [5] CEM II/B-V 32,5 R. (n.d.). Lafarge. Retrieved June 10, 2022 from https://www.lafarge.pl/cement-cem-iib-v-325-r-disabled-page
  • [6] Chen, H., Qian, C., Liang, C., & Kang, W. (2018). An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191370
  • [7] Chopra, P., Kumar, R., & Kumar, M. (2015). Artificial Neural Networks for the Prediction of Compressive Strength of Concrete. International Journal of Applied Science and Engineering, 13, 187–204.
  • [8] Chou, J., Chiu, C., Farofura, M., & Al-Tharawa, I. (2011). Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. Journal of Computing in Civil Engineering, 25(3), 1171.
  • [9] Dahmoune, F., Remini, H., Dairi, S., Aoun, O., Moussi, K., Bouaoudia-Madi, N., Adjeroud, N., Kadri, N., Lefsih, K., Boughani, L., Mouni, L., Nayak, B., & Madani, K. (2015). Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: Comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. Industrial Crops and Products, 77(0926–6690), 251–261. https://doi.org/https://doi.org/10.1016/j.indcrop.2015.08.062
  • [10] Dantas, A. T. A., Leite, M. B., & Nagahama, K. J. (2013). Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Construction and Building Materials, 38, 717–722. https://doi.org/10.1016/j.conbuildmat.2012.09.026
  • [11] Das, S., Swetapadma, A., & Panigrahi, C. (2019). A study on the application of artificial intelligence techniques for predicting the heating and cooling loads of buildings. Journal of Green Building, 14(3), 115–128. https://doi.org/10.3992/1943-4618.14.3.115
  • [12] Deepa, C., Kumari, K. S., & Sudha, V. P. (2010). Prediction of the compressive strength of high performance concrete mix using tree based modeling. International Journal of Computer Applications, 6(5), 0975– 8887.
  • [13] Erdal, H. I., Karakurt, O., & Namli, E. (2013). High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform. Engineering Applications of Artificial Intelligence, 26(4), 1246–1254. https://doi.org/10.1016/j.engappai.2012.10.014
  • [14] Fei, X., Youfu, S., & Xuejun, R. (2019). A simulation analysis method based on PSO-RBF model and its application. Cluster Computing, 22(s1), 2255–2261. https://doi.org/10.1007/s10586-018-2596-y
  • [15] Gjorv, O. D., & Sakai, K. (2014). Concrete Technology for a Sustainable Development in the 21st Century. CRC Press. https://doi.org/https://doi.org/10.1201/9781482272215
  • [16] Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials, 209, 425–436. https://doi.org/10.1016/j.conbuildmat.2019.03.119
  • [17] Han, Y., Fu, S., Wang, S., & Xie, Z. (2018). Study on Adiabatic Temperature Rise Reflecting Hydration Degree of Concrete. Advances in Materials Science and Engineering, 2018, 435049. https://doi.org/10.1155/2018/1435049
  • [18] Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14
  • [19] Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patellofemoral Joint. Sensors, 22(10), 3765. http://dx.doi.org/10.3390/s22103765
  • [20] Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors, 22(6), 2176. http://dx.doi.org/10.3390/s22062176
  • [21] Kurpinska, M., & Kułak, L. (2019). Predicting performance of lightweight concrete with granulated expanded Glass and Ash aggregate by means of using Artificial Neural Networks. Materials, 12(12), 2002. https://doi.org/10.3390/ma12122002
  • [22] Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020a). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88-101. https://doi.org/10.23743/acs-2020-24
  • [23] Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020b). Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials, 13(23), 5419. http://dx.doi.org/10.3390/ma13235419
  • [24] Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 16(January), 213–219. https://doi.org/10.1016/j.jobe.2018.01.007
  • [25] Orosa, J. A., Vergara, D., Costa, Á. M., & Bouzón, R. (2019). A novel method based on neural networks for designing internal coverings in buildings: Energy saving and thermal comfort. Applied Sciences, 9(10), 2140. https://doi.org/10.3390/app9102140
  • [26] Parichatprecha, R., & Nimityongskul, P. (2009). Analysis of durability of high performance concrete using artificial neural networks. Construction and Building Materials, 23(2), 910–917. https://doi.org/10.1016/j.conbuildmat.2008.04.015
  • [27] Pezeshki, Z., & Mazinani, S. M. (2019). Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: a survey. Artificial Intelligence Review, 52(1), 495–525. https://doi.org/10.1007/s10462-018-9630-6
  • [28] Pytka, J., Budzyński, P., Tomiło, P., Michałowska, J., Błażejczak, D., Gnapowski, E., Pytka, J., & Gierczak, K. (2022). Measurement of aircraft ground roll distance during takeoff and landing on a grass runway. Measurement, 195, 111130. https://doi.org/10.1016/J.MEASUREMENT.2022.111130
  • [29] Qmran, B. A., Chen, Q., Asce, A. M., & Jin, R. (2016). Comparison of Different Data Mining Techniques for Predicting Compressive Strength of Environmentally Friendly Concrete. Journal of Computing in Civil Engineering, 30(6), 2208.
  • [30] Rymarczyk, T., Kłosowski, G., Hoła, A., Sikora, J., Wołowiec, T., Tchórzewski, P., & Skowron, S. (2021). Comparison of Machine Learning Methods in Electrical Tomography for Detecting Moisture in Building Walls. Energies, 14(10), 2777. http://dx.doi.org/10.3390/en14102777
  • [31] Rymarczyk, T., Klosowski, G., Kozlowski, E., & Tchórzewski, P. (2019). Comparison of Selected Machine Learning Algorithms for Industrial Electrical Tomography. Sensors, 19(7), 1521. https://doi.org/10.3390/S19071521
  • [32] Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials, 15(3), 721. http://dx.doi.org/10.3390/ma15030721
  • [33] Szala, M., Awtoniuk, M., Latka, L., MacEk, W., & Branco, R. (2021). Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings. Journal of Physics: Conference Series, 1736(1), 012033. https://doi.org/10.1088/1742-6596/1736/1/012033
  • [34] Topçu, I. B., & Saridemir, M. (2008). Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Computational Materials Science, 42(1), 74–82. https://doi.org/10.1016/j.commatsci.2007.06.011
  • [35] Yeh, I. C., & Lien, L. C. (2009). Knowledge discovery of concrete material using Genetic Operation Trees. Expert Systems with Applications, 36(3 PART 2), 5807–5812. https://doi.org/10.1016/j.eswa.2008.07.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae48e4ac-df77-46b8-9a18-7207714a9598
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.