PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convective environment and development of a tornadic supercell in the Czech Republic on 24 June 2021

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study documents the atmospheric conditions and the development of a tornadic supercell in the Czech Republic, which occurred on the early evening on 24 June 2021. I used the data from the ERA5-reanalysis, vertical atmospheric sounding, synoptic map, and a Sentinel-2 satellite image to determinate the tornado route. As a result of the analysis, it can be concluded that the development of this tornadic supercell was caused by high CAPE values, amounting to around 5,000 J·kg-1, 0-6 km AGL wind shear 30 m·s-1, storm-relative helicity with values of 150 m2·s-2 and a wavy atmospheric front. The tornado occurred around 19:30 local time (1730 UTC) in the town Hrušky and moved north-east, reaching the town Hodonín. Based on satellite image derived from Sentinel-2, the widest point of the tornado reached 70 meters; it traveled a distance of about 20 kilometers and had a force of EF3/T5 on the Fujita/TORRO scale. As a result of this event, 6 people lost their lives, 200 people were seriously injured, and hundreds of buildings and cars were destroyed. Further studies on strong thunderstorm incidents in Europe are necessary for their better understanding and prediction.
Słowa kluczowe
Twórcy
  • Nicolaus Copernicus University, Faculty of Earth Sciences and Spatial Management
Bibliografia
  • Antonescu B., Schultz D.M., Lomas F., Kühne T., 2016, Tornadoes in Europe: Synthesis of the observational datasets, Monthly Weather Review, 144 (7), 2445-2480, DOI: 10.1175/MWR-D-15-0298.1.
  • Belo-Pereira M., Andrade C., Pinto P., 2017, A long-lived tornado on 7 December 2010 in mainland Portugal, Atmospheric Research, 185, 202-215, DOI: 10.1016/j.atmosres.2016.11.002.
  • Brázdil R., Chromá K., Púčik T., Černoch Z., Dobrovolný P., Dolák L., Kotyza O., Řezničková L., Taszarek M., 2020, The climatology of significant tornadoes in the Czech Republic, Atmosphere, 11 (7), 689, DOI: 10.3390/Atmos11070689.
  • Bunkers M.J., Klimowski B.A., Zeitler J.W., Thompson R.L., Weisman M.L., 2000, Predicting supercell motion using a new hodograph technique, Weather and Forecasting, 15 (1), 61-79, DOI: 10.1175/1520-0434(2000)0152.0.CO;2.
  • Coffer B.E., Taszarek M., Parker M.D., 2020, Near-Ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses, Weather and Forecasting, 35 (6), 2621-2638, DOI: 10.1175/WAF-D-20-0153.1.
  • Corine Land Cover, 2018, available online https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (data access 23.05.2022).
  • Dotzek N., Groenemeijer P., Feuerstein B., Holzer A.M., 2009, Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD, Atmospheric Research, 93 (1-3), 575-586, DOI: 10.1016/J.Atmosres.2008.10.020.
  • Figurski M.J., Nykiel G., Jaczewski A., Baldysz Z., Wdowikowski M., 2021, The impact of initial and boundary conditions on severe weather simulations using a high-resolution WRF model. Case study of the derecho event in Poland on 11 August 2017, Meteorology Hydrology and Water Management, DOI: 10.26491/mhwm/143877.
  • Fujita T.T., 1973, Tornadoes around the World, Weatherwise, 26 (2), 56-62, DOI: 10.1080/00431672.1973.9931633.
  • Glickman T.S. (ed.), 2000, Glossary of Meteorology, 2nd edition, American Meteorological Society, 850 pp.
  • Grieser J., Haines P., 2020, Tornado risk climatology in Europe, Atmosphere, 11 (7), 768, DOI: 10.3390/atmos11070768.
  • Groenemeijer P.H., Dotzek N., Stel F., Brooks H., Doswell C., Elsom D., Giaiotti D., Gilbert A., Holzer A., Meaden T., Salek M., Teittinen J., Behrendt J., 2004, ESWD - A standardized, flexible data format for severe weather reports. Preprints, 3rd European Conference on Severe Storms, León, 9-12 November 2004.
  • Groenemeijer P.H., Kühne T., 2014, A climatology of tornadoes in Europe: Results from the European Severe Weather Database, Monthly Weather Review, 142 (12), 4775-4790, DOI: 10.1175/Mwr-D-14-00107.1.
  • Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J.-N., 2018, ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3s), Climate Data Store (Cds), DOI: 10.24381/Cds.Bd0915c6.
  • IPCC, 2021, Climate Change 2021: The Physical Science Basis. Contribution Of Working Group I To The Sixth Assessment Report Of The Intergovernmental Panel On Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.), Cambridge University Press, in press
  • Meaden G.T., 1976, Tornadoes in Britain: Their intensities and distribution in the time and space, Journal of Meteorology, 1, 242-251.
  • Mishra P.K., 2017, Origin of air masses and their classification, DOI: 10.13140/Rg.2.2.16956.59528.
  • Peterson R.E., 1982, Tornadic activity in Europe - the last half-century, Preprints, 12th Conference on Severe Local Storms, San Antonio, Texas, 63-66.
  • R Core Team, 2014, R: A language and environment for statistical computing, R Foundation For Statistical Computing, Vienna, Austria, available online http://www.r-project.org/ (data access 23.05.2022).
  • Sulik S., 2021, Formation factors of the most electrically active thunderstorm days over Poland (2002-2020), Weather and Climate Extremes, 34, DOI: 10.1016/j.wace.2021.100386.
  • Sulik S., Kejna M., 2020, The origin and course of severe thunderstorm outbreaks in Poland on 10 and 11 August, 2017, Bulletin Of Geography. Physical Geography Series, 18, 25-39, DOI: 10.2478/bgeo-2020-0003.
  • Taszarek M., Allen J.T., Brooks H.E., Pilguj N., Czernecki B., 2021a, Differing trends in United States and European severe thunderstorm environments in a warming climate, Bulletin of the American Meteorology Society, 102 (2), 296-322, DOI: 10.1175/bams-d-20-0004.1.
  • Taszarek M., Brooks H.E., 2015, Tornado climatology of Poland, Monthly Weather Review, 143 (3), 702-717, DOI: 10.1175/mwr-d-14-00185.1.
  • Taszarek M., Brooks H.E., Czernecki B., Szuster P., Fortuniak K., 2018, Climatological aspects of convective parameters over Europe: A comparison of ERA-Interim and sounding data, Journal of Climate, 31 (11), 4281-4308, DOI: 10.1175/jcli-d-17- 0596.1.
  • Taszarek M., Pilguj N., Allen J., Gensini V., Brooks H.E., Szuster P., 2021b, Comparison of convective parameters derived from ERA5 and MERRA-2 with rawinsonde data over Europe and North America, Journal of Climate, 34 (8), 3211-3237, DOI: 10.1175/jcli-d-20-0484.1.
  • Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz W., Piasecki K., Pajurek Ł., Półrolniczak M., 2019, Derecho evolving from a mesocyclone - A study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation, Monthly Weather Review, 147 (6), 2283-2306, DOI: 10.1175/MWR-D-18-0330.1.
  • Thompson R.L., Mead C.M., Edwards R., 2007, Effective storm-relative helicity and bulk shear in supercell thunderstorm environments, Weather and Forecasting, 22 (1), 102-115, DOI: 10.1175/Waf969.1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae445d1d-da37-4e10-b1f4-fca0918ff9c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.