PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Bellman equations for terminal utility maximization with general bid and ask prices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we solve a system of Bellman equations for finite horizon continuous time terminal utility maximization problem with general càdlàg bid and ask prices.We assume that we have a restricted number of transactions at time moments we choose. The main result of the paper says that we can find a regular version of solutions to the system of Bellman equations, which enables us to find the form of nearly optimal strategies.
Rocznik
Strony
139--155
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland
autor
  • Institute of Mathematics, Polish Academy of Sciences (also Vistula University), ul. Śniadeckich 8, 00-656 Warsaw, Poland
Bibliografia
  • [1] M. Akian, A. Sulem, and M. Taksar, Dynamic optimization of long-term growth rate for a proportional transaction costs and logarithmic utility, Math. Finance 11 (2) (2001), pp. 153-188.
  • [2] J.-M. Bismut and B. Skalli, Temps d’arrêt optimal, théorie générale des processes et processus de Markov, Z. Wahrsch. Verw. Gebiete 39 (1977), pp. 301-313.
  • [3] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., Vol. 580, Springer, Berlin 1977.
  • [4] C. Dellacherie, Capacités et processus stochastiques, Springer, Berlin 1972.
  • [5] C. Dellacherie and P.-A. Meyer, Probabilities and Potential B: Theory of Martingales, North Holland, Amsterdam 1982.
  • [6] C. Doléans-Dade, Intégrales stochastiques dépendant d’un paramètre, Publ. Inst. Statist. Univ. Paris 16 (1967), pp. 23-34.
  • [7] A. G. Fakeev, The optimal stopping of random processes with continuous time, Teor. Veroyatn. Primen. 15 (1970), pp. 336-344.
  • [8] S. He, J. Wang, and J. Yan, Semimartingale Theory and Stochastic Calculus, CRC Press, Boca Raton 1992.
  • [9] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, second edition, Springer, New York 2000.
  • [10] P. D. Lax, Functional Analysis, Wiley, New York 2002.
  • [11] I. Norros, E. Valkeila, and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5 (4) (1999), pp. 571-587.
  • [12] G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel 2006.
  • [13] T. Rogala and L. Stettner, On construction of discrete time shadow price, AMO 72 (3) (2015), pp. 391-433.
  • [14] L. Stettner. Asymptotics of HARA utility from terminal wealth under proportional transaction costs with decision lag or execution delay and obligatory diversification, in: Advanced Mathematical Methods for Finance, G. Di Nunno and B. Øksendal (Eds.), Springer, Berlin-Heidelberg 2011, pp. 509-536.
  • [15] C. Stricker and M. Yor, Calcul stochastique dépendant d’un paramètre, Z. Wahrsch. Verw. Gebiete 45 (1978), pp. 109-133.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae3f3d43-2e21-4e3b-aeac-1c8ecd62bce5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.