PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Początek i rozwój półprzewodnikowych laserów VCSEL

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The beginnings and development of VCSELs
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono historię rozwoju laserów półprzewodnikowych o emisji powierzchniowej z pionową wnęką rezonansową (laserów VCSEL). Odnotowano ich najważniejsze przełomowe rozwiązania technologiczne oraz konstrukcyjno-materiałowe. Podano też parametry eksploatacyjne tych przyrządów na poszczególnych etapach rozwoju i porównano ich własności z laserami o emisji krawędziowej. Szczególny nacisk położono na pokazanie rozwoju i obecnego stanu azotkowych laserów VCSEL. Przedstawiono też wybrane wyniki modelowania działania tych konstrukcji.
EN
History of a development of surface-emitting semiconductor lasers with a vertical cavity (VCSEL lasers) is presented. The most important turning points of their technology solutions and material structures are described. Laser operation parameters are shown for successive development stages. Properties of surface-emitting lasers are compared with those of edge-emitting ones. Development of structures of nitride VCSELs is shown together with characterization of their current state. Results of numerical simulations of an operation of various surface-emitting nitride lasers are presented.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
  • Politechnika Łódzka, Instytut Fizyki, ul. Wólczańska 219, 90-924 Łódź
autor
  • Politechnika Łódzka, Instytut Fizyki, ul. Wólczańska 219, 90-924 Łódź
Bibliografia
  • [1] Hayashi I., Panish M.B., Foy P.W., Sumski S., Junction lasers which operate continuously at room temperature, Appl. Phys. Lett., 17 (1970), 109–110
  • [2] Dyment J.C., D’Asaro L.A., North J.C., Miller B.I. and Ripper J.E., Proton-bombardment formation of stripe-geometry heterostructure lasers for 300 K CW operation, Proc. IEEE 60 (1972), 726–8
  • [3] Tsukada T., GaAs-AlxGa1– xAs buried-heterostructure injection lasers, J. Appl. Phys. 45 (1974), 4899–6
  • [4] Kawaguchi H. and Kawakami T., Transverse-mode control in an injection laser by a strip-loaded waveguide, IEEE J.Quantum Electron. 13 (1977), 556–60
  • [5] Panish M.B. et al., Reduction of threshold current density in GaAs-AlxGa1–xAs heterostructure lasers by separate optical and carrier confinement, Appl. Phys. Lett., 22 (1973), 590–91
  • [6] Dupuis R.D. et al., Continuous 300 K laser operationof single quantum well AlxGa1-xAs-GaAs hetero-structure diodes grown by metalorganic chemical vapor deposition, Appl. Phys. Lett., 34 (1979), 265–7
  • [7] Tsang W.T., A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam, Appl. Phys. Lett., 39 (1981), 134–37
  • [8] Hersee S.D., Baldy M., Assenat P., de Cremous B. and Duchemin J.P., Very low threshold GRIN-SCH GaAs/GaAlAs laser structure grown by OM-VPE, Electron. Lett. 18 (1982), 870–1
  • [9] Kogelnik H. et al., Stimulated emission in a periodic structure, Appl. Phys. Lett., 18 (1971), 152–54
  • [10] Scifres D.R., Burnham R.D. and Streifer W., Distributedfeedback single heterojunction GaAs diode laser, Appl. Phys. Lett., 25 (1973), 203–06
  • [11] Zory P. and Comerford L.D., Grating-coupled doubleheterostructure AlGaAs diode lasers, IEEE J.Quantum Electron. 11 (1974), 451–57
  • [12] Alferov Zh.I. et al., Semiconductor lasers with the light output through the diffraction grating on the surface of the waveguide layer, IEEE J.Quantum Electron., QE-11, 7 (1975), 449
  • [13] Zory P., and Comerford L.D., Grating-coupled doubleheterostructure AlGaAs diode lasers, IEEE J. of Quantum Electron., QE-11, 7 (1975), 451
  • [14] Springthorpe A.J., A novel double-heterostructure p-n junction laser, Appl. Phys. Lett., 31, 8 (1977), 524
  • [15] Iga K., Surface-emitting laser-its birth and generation of new optoelectronics field, IEEE Journal of Selected Topics in Quantum Electronics, 6 (6) (2000), 1201-1215
  • [16] Melngailis I., Longitudinal injection-plasma laser of InSb, Appl. Phys. Lett., 6, 3 (1965), 59-60
  • [17] Soda H., Iga K., Kitahara C., and Suematsu Y., GalnAsP/lnP surface emitting injection lasers, Jpn. J. Appl. Phys. 18 (1979), 2329
  • [18] Kapron F.P. et al., Radiation losses in glass optical waveguides, Appl. Phys. Lett. 17 (1970), 423
  • [19] Iga K., Ishikawa S., Ohkouchi S., and Nishimura T., Room temperature pulsed oscillation of GaA/AlGaAs surface emitting injection laser, Appl. Phys. Lett. 45 (1984), 348
  • [20] Iga K. and Koyama F., Vertical-Cavity Surface Emiiting Lasers And Arrays, Chapter 3 in G.A. Evans and J.M. Hammer “Surface Emiting Semiconductor Lasers and Arrays” Academic Press, Inc., San Diego, 1993
  • [21] Koyama F., Kinoshita F., and Iga K., Room temperature cw operation of GaAs vertical cavity surface emitting laser, Trans. of IEICE of Japan, E11 (1988), 1089
  • [22] Kawasaki H., Koyama F., and Iga K., Improvement of a flat surface circular buried heterostructure GalnAsP/InP surface emitting laser, Jpn. J. Appl. Phys. 27 (1988), 1548
  • [23] Nomura Y. et al., Lasing characteristics of GaAs/AlGaAs multilayer composing distributed feedback cavity for surface emitting laser, Extended Abstracts of 17th Conf on Solid State Devices and Material, 71, 1985
  • [24] Uenohara H., Koyama F., and Iga K., Application of the multiquantum well (MQW) to a surface emitting laser, Jpn. J. Appl. Phys. 28 (1989), 740
  • [25] Geels R. et al., Analysis and design of a novel parallel-driven MQW DBR surface-emitting diode laser, The Conf. on Lasers and Electro-Optics, paper WM-1, 1988
  • [26] Jewell J.L., Scherer A., McCall S.L., Lee Y.H., Walker S., Harbison J.P., Florez L.T., Low threshold electrically pumped vertical-cavity surface-emitting microlasers, Electron. Lett. 25 (1989), 1123–1124
  • [27] Matin M.A. et al., Optically transparent indium-tin-oxide (ITO) ohmic contacts in the fabrication of vertical cavity surface emitting lasers, Electron. Lett., Vol. 30 (1994), no. 4, 318–320
  • [28] Sugimoto M. et al., Very low threshold current density in vertical cavity surface emitting laser diodes with periodically doped distributed bragg reflectors, Electron. Lett., Vol. 28 (1992), no. 4, 385–387
  • [29] Dallesasse J.M., Holonyak N., Sugg A.R., Richard T.A., and El-Zein N., Hydrolyzed oxidation of AlxGa1–xAs-AlAs-GaAs quantum well heterostructures and superlattices, Appl.Phys.Lett., Vol.57 (1990), 2844-6
  • [30] Huffaker D.L., Deppe D.G., Kumar K., and Rogers T.J., Native oxide defined ring contact for low threshold vertical cavity lasers, Appl. Phys. Lett., Vol. 65 (1994), 97–99
  • [31] Evans P.W., Wierer J.J., and Holonyak N., AlxGa1–xAs native oxide based distributed bragg reflectors for vertical cavity surface emitting lasers, J. Appl. Phys., Vol. 84 (1998), no. 10, 5436–5440
  • [32] Graham L.A., Huffaker D.L., and Deppe D.G., Spontaneous lifetime control in a native oxide aperture microcavity, Appl. Phys. Lett., Vol 74 (1999), no. 17, 2408–2410
  • [33] Yang G.M., MacDougal M., and Dupkus P.D., Ultralow threshold current vertical cavity surface emitting laser obtained with selective oxidation, Electron. Lett., Vol. 31 (1995), 886–888
  • [34] Schmid W., Wiedenmann D., Grabber M., Jager R., Michalzik R., and Ebeling K.J., CW operation of a diode cascade InGaAs quantum well VCSEL, Electron. Lett., Vol. 34 (1998), no. 6, 553–555
  • [35] Miller M., Grabberr M., Jager R., and Ebeling K.J., High power VCSEL arrays for emission in Watt regime at room temperature, IEEE Photon. Technol. Lett., Vol. 13 (2001), no. 3, 173–175
  • [36] Salet P. et al., Room temperature pulsed operating of 1.3 μm vertical cavity lasers including bottom InGaAsP/InP multilayer bragg mirrors, Electron. Lett., Vol. 33 (1997), no. 24, 2048–2049
  • [37] Boucart J. et al., 1 mW CW-RT Monolithic VCSEL at 1.55 μm, IEEE Photon. Technol. Lett., Vol. 11 (1999), no. 5, 629–631
  • [38] Babic D. et al., Room temperature continuous-wave operation of 1.54-μm vertical-cavity lasers, IEEE Photonics Technology Letters, 7(11) (1995), 1225–1227
  • [39] Qian Y. et al., 1.3 μm vertical cavity surface emitting lasers with double bonded GaAs/AlAs Bragg mirrors, IEEE Photon. Technol. Lett., Vol. 9 (1997), no. 1, 8–10
  • [40] Rapp S. et al., Near room temperature continuous wave operation of electrical pumped 1.55 μm vertical cavity lasers with InGaAsP/InP bottom mirror, Electron. Lett., Vol. 35 (1999), no. 1, 49–50
  • [41] Kim J.K. et al., Room temperature, electrically pumped multiple active region VCSELs with high differential efficiency at 1.55 μm, Electron. Lett., Vol. 35 (1999), no. 13, 1084–1085
  • [42] Hall E., Almuneau G., Kim J.K., Sjolund O., Kroemer H., and Coldren L.A., Electrically pumped, single-epitaxial VCSELs at 1.55 mm Sb-based mirrors, Electron. Lett., Vol. 35 (1999), no. 16, 1337–1338
  • [43] Larson M.C. et al., GaInNAs/GaAs long wavelength vertical cavity surface emitting laser diodes, IEEE Photon. Technol. Lett., Vol. 10 (1998), no. 2, 188–190
  • [44] Lott J.A. et al., InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm, Electron. Lett., Vol. 36 (2000), no. 16, 1384–1385
  • [45] Song D.S., Kim S.H., Park H.G., Kim C.K., and Lee Y.H., Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers, Appl. Phys. Lett., vol. 80 (2002), 3901–3903
  • [46] Westbergh P., Haglund E.P., Haglund E., Safaisini R., Gustavsson J., Larsson A., High-speed 850 nm VCSELs operating error free up to 57 Gbit/s, Electron. Lett. 49(16) (2013), 1021–1023
  • [47] Moser P. et al., 85ºC error-free operation at 38 Gb/s of oxide8 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 8/2017 confined 980-nm vertical-cavity surface-emitting lasers, Appl. Phys. Lett. 100(8) (2012), 081103–1–3
  • [48] Tan M.P., Fryslie S.T.M., Lott J.A., Ledentsov N.N., Bimberg D., Choquette K.D., Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser, IEEE Photonics Technol. Lett. 25(18) (2013), 1823–1825
  • [49] Haglund E. et al., 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s, Electronics Letters, vol. 51 (2015), no. 14, 1096–1098
  • [50] Lear K.L. et al., Vertical cavity surface emitting lasers with 21% efficiency by metal organic vapour phase epitaxy, IEEE Photon. Technol. Lett. 6(9) (1994), 1053
  • [51] Jung C. et al., 4.8 mW single mode oxide confined top surface emitting vertical cavity laser diodes, Electron. Lett. 33(21) (1997), 1790
  • [52] Francis D.A. et al., Monolithic 1310 nm buried heterostructure VCSEL using InGaAsP/InP DBR reflectors, in Optoelectronic Devices, ed. by J. Piprek, Proceedings of SPIE, 6013 (2005), 60130A-1
  • [53] Syrbu A. et al., 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands, in Proc. Conference on Optical Fiber Communication, paper OThS2, San Diego, CA, USA, 2008
  • [54] Caliman A. et al., 8 mW fundamental mode output of waferfused VCSELs emitting in the 1550 nm band, in Proc. Conference on Lasers and Electro Optics, paper CMRR1, Baltimore, MD, USA, 2009
  • [55] Yang H.P. et al., Characteristics of InGaAs submonolayer quantum dot and InAs quantum dot photonic crystal vertical cavity surface emitting lasers, J. Lightwave Technol. 26(11) (2008), 1387
  • [56] Furukawa A., Sasaki S., Hoshi M., Matsuzono A., Moritoh K., Baba T., High power single mode vertical cavity surface emitting lasers with triangular holey structure, Appl. Phys. Lett. 85(22) (2004), 5161
  • [57] Lott J.A., Schneider R.P., Choquette K.D., Kilcoyne S.P., Figiel J.J., Room temperature continuous wave operation of red vertical cavity surface emitting laser diodes, Electron. Lett. 29 (1993), 1693
  • [58] Johnson K., Hibbs-Brenner M., Hogan W., and Dummer M., Advances in Red VCSEL Technology, Advances in Optical Technologies, Volume 2012, Article ID 569379, 13 pages, 2012
  • [59] Jeon H. et al., Room temperature optically pumped bluegreen vertical cavity surface emitting lasers, Appl. Phys. Lett., Vol. 67 (1995), no. 12, 1668–1670
  • [60] Yokogawa T., Yoshii S., Tsujimura A., Sasai Y., and Merz J., Electrically pumped CdZnSe/ZnSe blue-green vertical-cavity surface-emitting lasers, Jap. J. Appl. Phys., vol. 34 (1995), no. 6B, L751
  • [61] Redwing J.M., Loeber D.A.S., Anderson N.G., Tischler M.A., Flynn J.S., An optically pumped GaN-AlGaN vertical cavity surface emitting laser, Appl. Phys. Lett. 69 (1996), 1
  • [62] Lu T.C., Kao C.C., Kuo H.C., Huang G.S., and Wang S.C., CW lasing of current injection blue GaN-based vertical cavity surface emitting laser, Appl. Phys. Lett., vol. 92 (2008), no. 14, 141102
  • [63] Higuchi Y. et al., Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection, Appl. Phys. Expr., vol. 1 (2008), no. 12, 121102
  • [64] Kasahara D. et al., Demonstration of blue and green GaNbased vertical-cavity surface-emitting lasers by current injection at room temperature, Appl. Phys. Express, vol. 4 (2011), no. 7, 072103
  • [65] Onishi T. et al., Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature, IEEE J. Quantum Electron., vol. 48 (2012), no. 9, 1107–1112
  • [66] Cosendey G. et al., Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate, Appl. Phys. Lett. 101 (2012), 15111
  • [67] Liu W.-J. et al., Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers, Appl. Phys. Lett., vol. 104 (2014), no. 25, 251116
  • [68] Holder C., Speck J.S., DenBaars S.P., Nakamura S., and Feezell D., Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers, Applied Physics Express, 5 (2012), 092104
  • [69] Leonard J.T. et al., Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact, Appl. Phys. Lett., vol. 107 (2015), no. 9, 091105
  • [70] Hamaguchi T. et al., Milliwatt-class GaN-based blue verticalcavity surface-emitting lasers fabricated by epitaxial lateral overgrowth, Phys. Status Solidi A, vol. 213 (2016), no. 5, 1170–1176
  • [71] Yeh P.S. et al., GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle, Appl. Phys. Lett., 109 (2016), 241103
  • [72] Ikeyama K. et al., Room temperature continuous-wave operation of GaN-based vertical-cavity surfaceemitting lasers with n-type conducting AlInN/GaN distributed bragg reflectors, Appl. Phys. Express, vol. 9 (2016), no. 10, 102101
  • [73] Matsui K. et al., GaN-based vertical cavity surface emitting lasers with periodic gain structures, Jpn. J. Appl. Phys., 55 (2016) 05FJ08
  • [74] Matsui K. et al., 3-mW RT-CW GaN-Based VCSELs and Their Temperature Dependence, presented at the International Workshop on Nitride Semiconductors, Orlando, USA, October 2016
  • [75] Sarzała R.P., Piskorski Ł., Nakwaski W., Azotkowe lasery typu VCSEL, Elektronika, 11 (2014), 104-7
  • [76] Marciniak M. et al., Monolityczna siatka HCG jako zwierciadło w azotkowym laserze VCSEL, Elektronika, 9 (2016), 35-38
  • [77] Czyszanowski T. et al. Metallic monolithic high-contrast grating VCSELs: new concept of vertical current injection, SPIE OPTO Symposium Photonics West, Francisco (USA), 28.01–2.02 2017
  • [78] Śpiewak P. et al., Analysis of threshold currents and transverse modes in nitride VCSELs with different resonators, IEEE Journal of Quantum Electronics, Volume 52 (2016), Issue 11, id: 2400807
  • [79] Sarzała R.P. et al., Designing of TJ VCSEL based on nitride materials, Proc. of SPIE: Laser Technology 2016: Progress and Applications of Lasers, Vol. 10159 1015908-1, 2017
  • [80] Śpiewak P., Sokół A.K., Wasiak M., and Sarzała R.P., Impact of AlN-aperture on optical and electrical properties of nitride VCSEL, Opt Quant Electron, 49 (2017), 114
  • [81] Śpiewak P. et al., Wpływ parametrów fizycznych warstwy ITO na pracę azotkowych laserów typu VCSEL, Elektronika, 9 (2016), 47-50
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae3c6aba-c230-4f4f-8641-684a0baf75ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.