PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature Effect on Performance of Different Solar Cell Technologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the main parameters that affect the solar cell performance is cell temperature; the solar cell output decreases with the increase of temperature. Therefore, it is important to select the proper solar cell technology that performs better at a specified location considering its average temperatures. In addition, the solar cell performance is directly reflected on the overall economics of the project. This paper is proposed to evaluate the variations in the performance of different solar cell technologies related to the temperature in Amman, Jordan. Field data of weather station and three PV systems (Poly-crystalline, Mono-crystalline and Thin-film) of identical design parameters were collected from Test Field Project at Applied Science Private University, Shafa Badran, Amman, Jordan. These data were analysed in the following way. estimated specific energy yield (kWh/kWp) for the three different PV systems was calculated depending on the measured value of solar irradiance and technical specifications of the installed solar panels and inverters, then the actual energy yield at different temperatures over one year was compared with the estimated value, so the deviations could be determined and actual temperature coefficients for energy yield could be calculated, knowing that the three PV Systems have identical design parameters (tilt angle, azimuth angle, type and dimensions of mounting structure and inverter size) and same cleaning method and schedule. It was found that the thin-film solar panels are less affected by temperature with temperature coefficient of -0.0984%, and -0.109%, -0.124% for Mono-crystalline and Poly-crystalline respectively. These results can be implemented in the preliminary design steps, specifically in the selection of the solar cell technology to be installed in a specific location.
Rocznik
Strony
249--254
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Renewable Energy Center, Applied Science Private University, Amman 11931, Jordan
autor
  • Mechanical Engineering Department, Zarqa Private University, Az-Zarqa 13132, Jordan
  • Mechanical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan
Bibliografia
  • 1. Cañete C., Carretero J. and Sidrach-de-Cardona M., 2014. Energy performance of different photovoltaic module technologies under outdoor conditions”, Energy, 65, Feb., 295–302.
  • 2. Dubey S., Sarvaiya J.N. and Seshadri B. 2013. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World, A Review. Energy Procedia, 33, 311–321.
  • 3. Gulin M., Vašak M. and, Baotić M., 2013. Estimation of the global solar irradiance on tilted surfaces. Proc. of 17th International Conference on Electrical Drives and Power Electronics, EDPE 2013, 334–339.
  • 4. Hamrouni N., Jraidi M. and Chérif A., 2008. Solar radiation and ambient temperature effects on the performances of a PV pumping system”, Revue des Energies Renouvelables, 11(1), 95–106.
  • 5. Pless S., Deru M., Torcellini P., and Hayter S. 2005. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings. Colorado. DOE/NREL and MRI, pp. 4.
  • 6. Priyanka S. and Ravindra N.M., 2012. Temperature dependence of solar cell performance–an analysis, Solar Energy Materials and Solar Cells, 101, 36–45.
  • 7. PVGIS European Communities, 2001–2012, Monthly Solar Radiation Data, D/G. Ratio of diffuse to global irradiation, 32.040, 35.900. http.//re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?map=africa
  • 8. PVSyst V6.43. Tools, Tables/graphs of solar parameters, Sun height and Incidence angle at 0° azimuth and 11° tilt in Shafa Badran, Jordan.
  • 9. Sauer D., Rau U. and Kaltschmitt M. 2007. Photovoltaic Power Generation. In: Kaltschmitt M., Streicher W. and Wiese A (Eds.), Renewable Energy – Technology, Economics and Environment. Berlin/Heidelberg. Springer-Verlag Publishing, pp. 268–271.
  • 10. SMA Solar Academy. Planning and Design, M-PPD-1-DE-en_WW-123610, pp. 18.
  • 11. Tobnaghi D.M., Madatov R. and Naderi D., 2013. The effect of temperature on electrical parameters of solar cells. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(12).
  • 12. Ye J.Y., Reindl T., Aberle A.G. and Walsh T.M., 2014. Performance Degradation of Various PV Module Technologies in Tropical Singapore”, IEEE Journal of Photovoltaics, 4(5), Sept.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae3a1bc6-130f-410e-8de8-e90cdf91d521
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.