Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For an n-times differentiable real function ƒ defined in an a real interval I, some properties of the Taylor remainder means Tn[ƒ] are considered. It is proved that Tn[ƒ] is symmetric iff n – 1, and a conjecture concerning the equality Tn[g]- Tn[ƒ] is formulated. The main result says that if ƒ (n) is one-to-one, there exists a unique mean Mn[ƒ] : ƒ(n) (I) x ƒ(n) (I) → ƒ(n) (I) such that, for all x, y ϵ I, …[wzór]. The connection between Tnƒ ana Mnƒ is given. A functional equation related to M2 ƒ is derived and an open problem is posed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
85--93
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Faculty of Mathematics Computer Science and Econometrics University of Zielona Góra ul. Prof. Z. Szafrana 5a PL-65-516 Zielona Góra, Poland
Bibliografia
- [1] Berrone L.R., Moro J., Lagrangian means, Aequationes Math., (55)(5)(1998), 217-226.
- [2] Bullen P.S., Handbook of Means and Their Inequalities, Mathemat-ics and Its Applications, Vol. 560, Kluwer Academic Publishers, Dor-drecht/Boston/London, 2003.
- [3] Horwitz A., Means and Taylor polynomials, J. Math. Anal. Appl., 149(1990), 220-235.
- [4] Horwitz A., Means and averages of Taylor polynomials, J. Math. Anal. Appl., 176(1993), 404-412.
- [5] Matkowski J., Mean value property and associated functional equation, Aequationes Math., 58(1999), 46-59.
- [6] Matkowski J., On weighted extensions of Cauchy’s means, J. Math. Anal. Appl., 319(2006), 215-227.
- [7] Matkowski J., A mean-value theorem and its applications, J. Math. Anal. Appl., 373(2011), 227-234.
- [8] Matkowski J., Power means generated by some mean-value theorems, Proc. Amer. Math. Soc., 139(2011), 3601-3610.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae368d32-1dc0-4289-86ff-454017687e41