PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Last scene in the large scale rotations of the Western Carpathians as reflected in paleomagnetic constraints

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper provides an overview of the paleomagnetic results which constrain the post-Paleogene tectonic development of the Western Carpathians. A group of these results are relevant to the last stage of the Tertiary folding and thrusting of the Silesian, Dukla and Magura nappes of the Outer Western Carpathian and were obtained from Paleogene-Lower Miocene flysch sediments. Both the pre- and post-folding remanences indicate about 50° CCW vertical axis rotation with respect to the present orientation. This is about a 60° rotation relative to stable Europe. It follows that the general orientation of the Silesian and more internal nappes were NW-SE, at least until the mid-Miocene. The CCW vertical axis rotation was coordinated with that of the Central Carpathian Paleogene Basin. The termination of the rotation can be estimated from the paleomagnetic data available from the Pieniny andesites which intruded the Pieniny Klippen Belt and the southern part of the Magura Nappe as well as from those obtained for the Neogene intramontane basins which opened up in the Outer and in the Central Western Carpathians. The paleomagnetic vectors for the andesites form two groups. The first group suggests about 45° CCW rotation relative to north, while the second shows no rotation. At the present stage of our knowledge it seems likely that some of the andesite bodies were intruded around 18 Ma, which is the oldest isotope age for the intrusions of the Wżar Mts, while some other bodies could have been emplaced after the rotation, around 11 Ma, which is the youngest isotope age for the Brijarka quarry. Vertical axis CCW rotation was also observed on sediments older than 11.6 Ma in the Orava-Nowy Targ Intramontane Basin which saddles the Magura Nappe and the Central Carpathian Paleogene Basin. However, this rotation was related to fault zone activity and was not attributed to the general rotation of the Outer Western Carpathian nappe system. Paleomagnetic results from the Nowy Sącz Intramontane Basin, which opened over the Magura Nappe, and those for the Central Western Carpathian Turiec Intramontane Basin do not indicate vertical axis rotation. In the first case, the loosely controlled age limit of the termination of the rotation is around 12 Ma. Well constrained results from the second basin imply that the rotation was definitely over by 8 Ma. Based on the above observations, and aware of the problem of often loose age control on the formation and deformation of the deposits of the intramontane basins, it is tentatively concluded that the large scale CCW rotation of the Central Western Carpathians, together with the Magura, Dukla and Silesian nappes, must have started after 18 Ma and terminated around 11 Ma.
Wydawca
Rocznik
Strony
109--133
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
autor
  • Mining and Geological Survey of Hungary, Palaeomagnetic Laboratory; Columbus 17-23, H-1145 Budapest, Hungary
Bibliografia
  • Aleksandrowski P., 1985. Tektonika regionu babiogórskiego: interferencja zachodnio- i wschodniokarpackich kierunków fałdowych [A structure of the Mount Babia Góra region (magura nappe, Western outer Carpoathians): an inference of West and East Carpathians fold trends]. An-nales Societatis Geologorum Poloniae, 55, 375–422.
  • Anczkiewicz A.A. & Anczkiewicz R., 2016. U–Pb zircon geo-chronology and anomalous Sr–Nd–Hf isotope systematics o flate orogenic andesites: Pieniny Klippen Belt, Western Carpathians, South Poland. Chemical Geology, 427, 1–16. ht tps://doi.org /10.1016/j.chemgeo.2016.02.0 04.
  • Anczkiewicz A.A., Zattin M. & Środoń J., 2005. Cenozoic uplift of the Tatras and Podhale Basin from the perspective of the apatite fission track analyses. Polskie Towarzystwo Mineralogiczne. Prace specjalne, 25, 261–264.
  • Anczkiewicz A.A., Środoń J. & Zattin M., 2013. Thermal history of the Podhale Basin in the Internal Western Carpathians from the perspective of apatite fission track analyses. Geologica Carpathica, 64, 141–151. https://doi.org/10.2478/geoca-2013-0010.
  • Baumgart-Kotarba M., Marcak H. & Márton E., 2004. Rotation along the transverse transforming Orava strike-slip fault: based on geomorphological, geophysical and paleomagnetic data (Western Carpathians). Geologica Carpathica, 55, 3, 219–226.
  • Bezák V., Broska I., Ivanička J., Reichwalder P., Vozár J., Polák M., Havrila M., Mello J., Biely A., Plašienka D., Potfaj M., Konečný V., Lexa J., Kaličiak M., Žec B., Vass D., Elečko M., Janočko J., Pereszlényi M., Marko F., Maglay J. & Pristaš J., 2004. Tektonická mapa Slovenskej republiky. Ministerstvo životného prostredia Slovenskej republik [Tectonic Map of Slovak Republic. Ministry of Environment of the Slovak Republic]. Štátny geologický ústav Dionýza Štúra, Bratislava.
  • Birkenmajer K., 1986. Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, 88, 7–32.
  • Birkenmajer K. & Nairn A., 1968. Paleomagnetic studies of Polish rocks. III. Neogene igneous rocks of the Pieniny Mountains, Carpathians. Annales Societatis Geologorum Poloniae, 38, 475–489.
  • Birkenmajer K. & Pécskay Z., 1999. K-Ar dating of the Miocene andesite intrusions, Pieniny Mts, West Carpathians, Poland. Bulletin of the Polish Academy of Sciences. Earth Sciences, 47, 155 –169.
  • Birkenmajer K. & Pécskay Z., 2000. K-Ar dating of the Miocene andesite intrusions, Pieniny Mts, West Carpathians, Poland: a supplement. Studia Geologica Polonica, 117, 7–25.
  • Butler R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications.
  • Decker K., Peresson H. & Hinsch R., 2005. Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quaternary Science Reviews, 24, 305–320.
  • Enkin R.J., 2003a. The direction-correction tilt test: an all-purpose tilt/fold test for paleomagnetic studies. Earth and Planetary Science Letters, 212, 151–166. https://doi.org/10.1016/S0012-821X(03)00238-3.
  • Enkin R.J., 2003b. PMGSC Paleomagnetism Data Analysis, v 4.2. Geological Survey of Canada, Sidney.
  • Filo I. & Siráňová Z., 1996. Tomášovské vrstvy – nova li-tostratigrafická jednotka podtatranskej skupiny [The Tomášovce Member – a new lithostratigraphic unit of the Subtatric Group]. Geologicke práce, správy, 102, 41–49.
  • Fisher R.A., 1953. Dispersion on a sphere. Proceedings of the Royal Society London, 217, 295–305.131Geology, Geophysics and Environment, 2020, 46 (2): 109–133Last scene in the large scale rotations of the Western Carpathians as reflected in paleomagnetic constraints.
  • Fodor L., Francu J., Krejčí O. & Stráník Z., 1995. Palaeogeographic and Tectonic Evolution of the Carpathian Flysch Belt of Southern Moravia (Czech Republic). Special Publications, Geological Society of Greece, 4/1.
  • Gašparík J., Brestenská E., Forgáč J., Franko O., Hajósová M., Hanáček J., Marková M., Matkulčík E., Planderová E. & Sitár V., 1974. Štruktúrny vrt GHŠ-1 (Horná Štubňa) [Structural borehole GHŠ-1 (Horná Štubňa)]. Regionálna geológia, 3, Štátny geologický ústav Dionýza Štúra, Bratislava.
  • Gašparík J., Halouzka R., Miko O., Gorek J., Rakús M., Buj-novský A., Lexa J., Panáček A., Samuel O., Gašparíková V., Planderová E., Snopková P., Fendek M., Hanáček J., Modlitba I., Klukanová A., Žáková E., Horniš J. & Ondrejičková A., 1995. Výsvetlivky ku geologickej mape Turčianskej kotliny 1:50 000 [Explanations to geological map 1:50 000 of the Turiec Depression]. Štátny geologický ústav Dionýza Štúra, Bratislava.
  • Gedl P., 1998. Wiek fliszu podhalańskiego na podstawie dinocyst. Przegląd Geologiczny, 46, 45–46.
  • Golonka J., Krobicki M., Waśkowska A., Cieszkowski M. & Ślączka A., 2015. Olistostromes of the Pieniny Klippen Belt, Northern Carpathians. Geological Magazine, 152, 269–286.
  • Golonka J., Krobicki M. & Waśkowska A., 2018. The Pieniny Klippen Belt in Poland. Geology, Geophysics & Environment, 4 4, 111–125.
  • Golonka J., Pietsch K., Marzec P., Kasperska M., Dec J., Cichostępski K. & Lasocki S., 2019. Deep structure of the Pieniny Klippen Belt in Poland. Swiss Journal of Geosciences, 112, 475–506.
  • Gross P., Köhler E., Haško J., Halouzka R., Mello J. & Nagy A., 1993. Geológia juźnej a východnej Oravy [Geology of southern and eastern Orava]. Štátny geologický ústav Dionýza Štúra, Bratislava.
  • Hók J., Kováč M., Rakús M., Kováč P., Nagy A., Kováčová--Slamková M., Sitár V. & Šujan M., 1998. Geologic and tectonic evolution of the Turiec depression in the Neogene. Slovak Geological Magazine, 4, 165 –176.
  • Janočko J., 2002. Centrálnokarpatský paleogénny bazén – vývoj a depozičné systémy [Central-Carpathian Paleogene basin – evolution and depositional systems]. Mineralia Slovaca, 34, 159–180.
  • Janočko J. & Jacko S., 1998. Marginal and deep-sea deposits of Central-Carpathian Paleogene Basin, Spišská Magura region, Slovakia. Implication for basin history. Slovak Geological Magazine, 4, 4, 281–292.
  • Janočko J., Hamršmíd B., Jacko S. & Siráňová Z., 1998. Suprafan and chanell-and-levee deposits near Tichý Potok, Levoča Mts.; Central-Carpathian Paleogene Basin, Slovakia. Slovak Geological Magazine, 4, 1, 3–15.
  • Kaczmarek A., Oszczypko-Clowes M. & Cieszkowski M., 2016. Early Miocene age of the Stare Bystre Formation based on calcareous nannofossils (Magura Nappe, Outer Carpathians, Poland). Geological Quarterly, 60, 2, 341–354.
  • Kent J.T., Briden J.C. & Mardia K.V., 1983. Linear and planar structure in order multivariate data as applied to progressive demagnetization of paleomagnetic remanence. Geophysical Journal of the Royal Astronomical Society,75, 593– 621.
  • Kirschvink J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699–718.
  • Kiss D., Márton E. & Tokarski A.K., 2016. An integrated paleomagnetic and magnetic anisotropy study of the Oligocene flysch from the Dukla nappe, Outer Western Car-pathians, Poland. Geologica Carpathica, 57, 6, 595–605.
  • Konečný V., Lexa J. & Planderová E., 1983. Stratigrafické členenie neovulkanitov stredného Slovenska [Stratigraphy of the Central Slovakia Volcanic Field]. Západné Karpaty, séria Geológia, 9, Štátny geologický ústav Dionýza Štúra, Bratislava.
  • Koráb T., Krs M., Krsová M. & Pagáč P., 1981. Paleomagnetic Investigations of Albian(?)–Paleocene to Lower Eocene Sediments from the Dukla Unit, East Slovakian Flysch, Czechoslovakia. Západné Karpaty, séria Geológia, 7, Štátny geologický ústav Dionýza Štúra, Bratislava, 127–149.
  • Kováč P. & Hók J. 1993. The Central Slovakia fault System – field evidence of a strike slip. Geologica Carpathica, 44, 3, 155–159.
  • Kováč M., Hók J., Minár J., Vojtko R., Bielik M., Pipík R., Rakús M., Kráľ J., Šujan M. & Králiková S., 2011. Neogene and Quaternary development of the Turiec Basin and landscape in its catchment. A tentative mass balance model. Geologica Carpathica, 62, 361–379.
  • Kováč M., Plašienka D., Soták J., Vojtko R., Oszczypko N., Less G., Ćosović V., Fügenschuh B. & Králiková S., 2016. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140, 9–27.
  • Kováč M., Márton E., Oszczypko N., Vojtko R., Hók J., Králiková S., Plašienka D., Klučiar T., Hudáčková N. & Oszczypko-Clowes M., 2017. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global Planetary Change, 155, 133–154.
  • Kováč M., Márton E., Klučiar T. & Vojtko R., 2018. Miocene basin opening in relation to the north-eastward tectonic extrusion of the ALCAPA Mega-Unit. Geologica Carpathica, 69, 3, 254–263.
  • Králiková S., Vojtko R., Andriessen P., Kováč M., Fügenschuh B., Hók J. & Minár J., 2014. Late Cretaceous-Cenozoic thermal evolution of the northern part of the Central Western Carpathians (Slovakia): revealed by zircon and apatite fission track thermochronology. Te ctonophysics, 615 – 616, 142–153.
  • Krs M., Krsová M., Chvojka R. & Potfaj M., 1991. Paleomagnetic investigations of the flysch belt in the Orava region, Magura unit, Czechoslovak Western Carpathians. Geologické práce, Správy, 92, 135–151.
  • Lexa J., Bezák V., Elečko M., Mello J., Polák M., Potfaj M. & Vozár J. (eds.), 2000. Geologická mapa Západných Karpát a priľahlých území 1:500 000. Ministerstvo životného prostredia Slovenskej republiky [Geological map of Western Carpathians and adjacent areas 1: 500,000. Ministry of Environment of Slovak Republic]. Štátny geologický ústav Dionýza Štúra, Bratislava.
  • Łoziński M., Wysocka A. & Ludwiniak M., 2015. Neogene terrestrial sedimentary environments of the Orava-Nowy Targ Basin: a case study of the Oravica River section near Čimhová, Slovakia. Geological Quarterly, 59, 21–34.
  • Ludwiniak M., Śmigielski M., Kowalczyk S., Łoziński M., Czarniecka U. & Lewińska L., 2019. The intramontane Orava Basin – evidence o flarge-scale Miocene to Quaternary sinistral wrenching in the Alpine-Carpathian-Pannonian area. Acta Geologica Polonica, 69, 3, 339–386.
  • Márton E., Mastella L. & Tokarski A.K., 1999. Large counterclockwise rotation of the Inner West Carpathian Paleogene Flysch – evidence from paleomagnetic investigation of the Podhale Flysch (Poland). Physics and Chemistry of the Earth, A24, 8, 645–649.
  • Márton E., Tokarski A.K. & Halász D., 2004. Late Miocene counterclockwise rotation of the Pieniny andesites at the contact of the Inner and Outer West Carpathians. Geologica Carpathica, 55, 5, 411–419.
  • Márton E., Rauch-Włodarska M., Krejčí O., Tokarski A.K. & Bubík M., 2009a. An integrated palaeomagnetic and AMS study of the Tertiary flysch from the Outer Western Carpathians. Geophysical Journal International, 177, 925–940. https://doi.org/10.1111/j.1365-246X-2009.04104.x.
  • Márton E., Jeleńska M., Tokarski A.K., Soták J., Kováč M. & Spišiak J., 2009b. Current-independent paleomagnetic declinations in flysch basins: a case study from the Inner Carpathians. Geodinamica Acta, 22, 1–3, 73–82. https://doi.org/10.3166/ga.22.73-82.
  • Márton E., Tokarski A.K., Krejčí O., Rauch M., Olszewska B., Tomanová Petrová P. & Wójcik A., 2011. “Non European” paleomagnetic directions from the Carpathian Foredeep at the southern margin of the European plate. Terra Nova, 23, 134 –14 4. https://doi.org /10.1111/j.1365-3121.2011.00993.x.
  • Márton E., Grabowski J., Plašienka D., Túnyi I., Krobicki M., Haas J. & Pethe M., 2013. New paleomagnetic results from the Upper Cretaceous red marls of the Pieniny Klippen Belt, Western Carpathians: evidence for general CCW rotation and implications for the origin of the structural arc formation. Tectonophysics, 592, 1–13. https://doi.org/10.1016/j.tecto.2013.01.027.
  • Márton E., Grabowski J., Tokarski A.K. & Túnyi I., 2016. Palaeomagnetic results from the fold and thrust belt of the Western Carpathians: an overview. [in:] Pueyo E.L., Cifelli F., Sussman A.J. & Oliva-Urcia B. (eds.), Palaeomagnetism in Fold and Thrust Belts: New Perspectives, Geological Society, London, Special Publications, 425, 7–36. https://doi.org/10.1144/SP425.1.
  • Márton E., Zampieri D., Ćosović V., Moro A. & Drobne K., 2017. Apparent Polar Wander Path for Adria extended by new Jurassic paleomagnetic results from its stable core: tectonic implications. Tectonophysics, 700–701, 1–18. https://doi.org/j.tecto.2017.02.004.
  • Márton E., Pipik R., Starek D., Šurka J., Kovács E., Vidhya M., Świerczewska A., Tokarski A.K., Vojtko R. & Kraliková S., in prep. Enhancing the reliability of the magnetostratigrahic age assignment of azimuthally non-oriented drill cores by the integrated application of palaeomagnetic analysis, field tests, AMS, and the gradual evolution of the endemic fauna as documented on the Late Miocene limnic deposits of the Turiec Basin (Central Western Carpathians).
  • Marzec P., Golonka J., Pietsch K., Kasperska M., Dec J., Cichostępski K. & Lasocki S., 2020. Seismic imaging of mélanges – Pieniny Klippen Belt case study. Journal of the Geological Society, 177, 629–646.
  • McFadden P.L. & McElhinney M.W., 1988. The combined analysis of remagnetization circles and direct observations in paleomagnetism. Earth and Planetary Science Letters, 87, 161–172.
  • McFadden P.L. & McElhinney M.W., 1990. Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103, 725–729.
  • Nagy A., Vass D., Petrik F. & Pereszlényi M., 1996. Tectogenesis of the Orava Depression in the light o flatest biostratigraphic investigations and organic matter alteration studies. Slovak Geological Magazine, 1, 49–58.
  • Nemčok M., Krzywiec P., Wojtaszek M., Ludhová L., Klecker R.A., Sercombe W.J. & Coward M.P., 2006. Tertiary development of the Polish and eastern Slovak parts of the Carpathian accretionary wedge: insights from balanced cross-sections. Geologica Carpathica, 57, 5, 355–370.
  • Oszczypko N., 1973. Budowa geologiczna Kotliny Sądeckiej [The geology of the Nowy Sącz Basin, Middle Carpathians]. Biuletyn Instytutu Geologicznego, 271, 101–197.
  • Oszczypko N., 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50, 169–194.
  • Oszczypko N. & Oszczypko-Clowes M., 2009. Stages in the Magura Basin. a case study of the Polish sector (Western Carpathians). Geodinamica Acta, 22, 83–100.
  • Oszczypko N., Andreyeva-Grigorovich A.S., Malata E. & Oszczypko-Clowes M.A., 1999. The Lower Miocene deposits of the Rača subunit near Nowy Sącz (Magura nappe, Polish Outer Carpathians). Geologica Carpathica, 50, 416–433.
  • Oszczypko-Clowes M., Oszczypko N. & Wójcik A., 2009. New data on the late Badenian-Sarmatian deposits of the Nowy Sącz Basin (Magura Nappe, Polish Outer Carpathians) and their palaeogeographicacal implications. Geological Quarterly, 53, 273–292.
  • Oszczypko-Clowes M., Oszczypko N., Piecuch A., Soták J. & Boratyn J., 2018. The Early Miocene residual flysch basin at the front of the Central Western Carpathians and its palaeogeographic implications (Magura Nappe, Poland). Geological Quaterly, 62, 597–619. P
  • Panaiotu C.G., Visan M., Tugui A., Seghedi I. & Panaiotu A.G., 2012. Palaeomagnetism of the South Harghita volcanic rocks of the East Carpathians: implications for tectonic rotations and palaeosecular variation in the past 5 Ma. Geophysical Journal International, 189, 369–382. ht t ps://doi.org /10.1111/j.1365-24 6X .2012 .05394.x.
  • Picha F.J., Stráník Z. & Krejčí O., 2006. Geology and hydro-carbon resources of the Outer Western Carpathians and their foreland, Czech Republic. [in:] Golonka J. & Picha F.J. (ed s.), The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Memoir, 84, 49–175.
  • Pipík R., Bodergat A-M., Briot D., Kováč M., Kráľ J. & Zielinski G., 2012. Physical and biological properties of the late Miocene, longlived Turiec Basin, Western Carpathians (Slovakia) and its paleobiotopes. Journal of Paleolimnology, 47, 233–249. https://doi.org/10.1007/s10933-011-9573-2.
  • Plašienka D., 2012. Early stages of structural evolution of the Carpathian Klippen Belt (Slovakian Pieniny sector). Mineralia Slovaca, 44, 1, 1–16.
  • Plašienka D., 2018. Continuity and Episodicity in the Early Alpine Tectonic Evolution of the Western Carpathians: How Large-Scale Processes Are Expressed by the Orogenic Architecture and Rock Record Data. Tectonics, 37, 2029–2079. https://doi.org/10.1029/2017TC004779.
  • Pomianowski P., 2003. Tektonika Kotliny Orawsko-Nowotarskiej – wyniki kompleksowej analizy danych grawimetrycznych i geoelektrycznych [Tectonics of the Orava-Nowy Targ Basin – results of the combined analysis of the gravity and geoelectrical data]. Przegląd Geologiczny, 51, 498–506.
  • Rakús M., 1998. Principles and methods applied to create geodynamic model. [in:] Rakús M. (ed.), Geodynamic development of the Western Carpathians, Geological Survey of Slovak Republic, Bratislava, 9–15.
  • Scholger R. & Stingl K., 2004. New paleomagnetic results from the middle Miocene (Karpatian and Badenian) in Northern Austria. Geologica Carpathica, 55, 199–206.
  • Siemińska A., Starzec K., Waśkowska A. & Wendorff M., 2020. Sedimentary and diapiric mélanges in the Skrzydlna area (Outer Carpathians of Poland) as indicators of basinal and structural evolution. Journal of the Geological Society of London, 177, 600 – 618.
  • Soták J., Pereszlenyi M., Marschalko R., Milička J. & Starek D., 2001. Sedimentology and hydrocarbon habitat of the sub-marine-fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia). Marine Petroleum Geology, 18, 87–114.
  • Świerczewska A. & Tokarski A.K., 1998. Deformation bands and the history of folding in the Magura nappe, Western Outer Carpathians (Poland). Tectonophysics, 297, 73–90.
  • Tokarski A.K. & Świerczewska A., 1998. History of folding in the Magura Nappe, Outer Carpathians, Poland. [in:] Rossmanith H.-P. (ed.), Mechanics of Faulted and Jointed Rock, Balkema, 125–130.
  • Tokarski A.K., Świerczewska A., Zuchiewicz W., Starek D. & Fodor L., 2012. Quaternary exhumation of the Carpathians: a record from the Orava-Nowy Targ Intramontane Basin, Western Carpathians (Poland and Slovakia). Geologica Carpathica, 63, 257–266.
  • Tokarski A.K., Márton E., Świerczewska A., Fheed A., Za-sadni J. & Kukulak J., 2016. Neotectonic rotations in the Orava-Nowy Targ Intramontane Basin (Western Carpathians): An integrated palaeomagnetic and fractured clasts study. Tectonophysics, 685, 35–43. https://doi.org/10.1016/j.tecto.2016.07.013.
  • Torsvik T.H., van der Voo R., Preeden U., Mac Niocaill C., Steinberger B., Doubrovine P.V., van Hinsbergen D.J.J., Domeier M., Gaina C., Tohver E., Meert J.G., Mccausland P.J.A. & Cocks L.R.M., 2012. Phanerozoic polar wander, paleogeography and dynamics. Earth Science Review, 114, 325–368. https://doi.org/10.1016/j.earsci-rev.2012.06.007.
  • Watycha L., 1976. Neogen niecki orawsko-nowotarskiej [The Neogene of the Orawa-Nowy Targ Basin]. Kwartalnik Geologiczny, 20, 3, 575–585.
  • Watycha L., 1977a. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000. 1047, Arkusz Jabłonka. Wydawnictwa Geologiczne, Warszawa.
  • Watycha L., 1977b. Szczegółowa mapa geologiczna Polski. 10 4 7, Jabłonka. Wydawnictwa Geologiczne, Warszawa.
  • Wysocka A., Łoziński M., Śmigielski M., Czarniecka U. & Bojanowski M., 2018. New data on the age of the sedimentary infill of the Orava-Nowy Targ Basin – a case study of the Bystry Stream succession (Middle/Upper Miocene, Western Carpathians). Geological Quarterly, 62, 327–343.
  • Zbořil L., Šefara J., Halmešová S., Kráľ M., Pucjnerová M., Stránska M. & Szalaiová V., 1985. Geofyzikálny výskum Turčianskej kotlina. Geofond, Bratislava [manuscript].
  • Zuchiewicz W., Tokarski A. K., Jarosiński M. & Márton E., 2002. Late Miocene to present day structural development of the Polish segment of the Outer Carpathians. Stephan Mueller Special Publication Series, 3, 185–202.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae35d88d-f29e-42c0-974a-5d3326c524f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.