PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with210Pb method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents data on heavy metal – Hg, Pb, Cd and Zn – distribution in the layers of marine sediments from the off-shore areas of the southern Baltic Sea: Gdańsk Deep, SE Gotland Basin and Bornholm Deep. Depth profiles of metal concentrations were converted to time-based profiles using the 210Pb dating method and verified by 137Cs distribution in the vertical profile. The linear sedimentation rates in the Gdańsk Deep and SE Gotland Basin are similar, 0.18 cm yr-1 and 0.14 cm yr-1, respectively, while the region of the Bornholm Deep is characterized by a greater sedimentation rate: 0.31 cm yr-1. Regarding anthropogenic pressure, Gdańsk Deep receives the largest share among the analyzed regions. The maximal metal concentrations detected in this area were Zn – 230 mg kg-1, Pb – 77 mg kg-1, Cd – 2.04 mg kg-1 and Hg – 0.27 mg kg-1. The least impact of anthropogenic pressure was noticeable in SE Gotland Basin. The combination of sediment dating with the analysis of vertical distribution of heavy metals in sediments benefited in the determination of target metal concentrations used in environmental status assessments. Reference values of heavy metal concentrations in marine sediments were determined as: Zn – 110 mg kg-1, Pb – 30 mg kg-1, Cd – 0.3 mg kg-1 and Hg – 0.05 mg kg-1 from the period of minor anthropogenic pressure. Basing on the determined indices: enrichment factor (EF), geoaccumulation indicator (Igeo) and contamination factor (CF) the status of marine environment was assessed regarding the pollution with heavy metals.
Czasopismo
Rocznik
Strony
32--43
Opis fizyczny
Bibliogr. 42 poz., tab., wykr., mapy
Twórcy
autor
  • Institute of Meteorology and Water Management – National Research Institute, Maritime Branch, Waszyngtona 42, Gdynia, Poland
autor
  • Institute of Meteorology and Water Management – National Research Institute, Maritime Branch, Waszyngtona 42, Gdynia, Poland
autor
  • Institute of Meteorology and Water Management – National Research Institute, Maritime Branch, Waszyngtona 42, Gdynia, Poland
  • Central Laboratory for Radiological Protection, Warsaw, Poland
Bibliografia
  • [1] Acevedo-Figueroa, D., Jiménez, B., Rodroguez-Sierrra, C., 2006. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ. Pollut. 141, 336—342.
  • [2] Anon., 2000. Directive 200/60/EC of the European Parliament and the Council Establishing a Framework for Community Action in the Field of Water Policy. Legislative Acts and other instruments. ENV221 CODEC 513. European Union.
  • [3] Anon., 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Off. J. Eur. Union L 164/ 19 25.6.2008.
  • [4] Álvarez-Iglesias, P., Quintana, B., Rubio, B., Pérez-Arlucea, M., 2007. Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. J. Environ. Radioact. 98, 229—250.
  • [5] Appleby, P.G., 1997. The use of 210Pb and 137Cs as tracers in modeling transport processes in lake catchment systems. In: Desmet (Eds.), Freshwater and Estuarine Radioecology. Elsevier, Amsterdam, 44—448.
  • [6] Appleby, P.G., Oldfield, F., 1992. Uranium-Series Disequilibrium — Application to Earth. Marine and environmental sciences. Oxford University Press, New York.
  • [7] Ayrault, Le Cloarec, S., Rianti Priadi, M.-F., Bonté, C., Göpel, P.Ch., 2012. Lead contamination of the Seine River, France: geochemical implications of a historical perspective. Chemosphere 87, 902—910.
  • [8] Beldowski, J., Pempkowiak, J., 2003. Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdansk Basin, Southern Baltic Sea. Chemosphere 52, 645—654.
  • [9] Birch, G.F., Olmos, M.A., 2008. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES J. Mar. Sci. 65, 1407—1413.
  • [10] Boer, W., van der Bergh, G.D., de Haas, H., de Stigter, H.C., Gieles, R., van Weering, Tj.C.E., 2006. Validation of accumulation rates in Teluk Banten (Indonesia) from commonly applied 210Pb models, using the 1883 Krakatau tephra as time marker. Mar. Geol. 227, 263—277.
  • [11] Carvalho Gomes, F., Godoy, J.M., Godoy, M.L., Carvalho, Z.L., Lopes, R.T., Sanchez-Cabeza, J.A., Lacerda, L.D., Wasserman, J.C., 2009. Metal concentrations, fluxes, inventories and chronologies in sediments from Sepetiba and Ribeira Bays: a comparative study. Mar. Pollut. Bull. 59, 123—133.
  • [12] Cheevaporn, V., San-Diego-McGlone, M.L., 1997. Aluminium normalization of heavy-metal data from estuarine and coastal sediments of the Gulf of Thailand. Thammasat Int. J. Sci. Technol. 2 (2), 37—46.
  • [13] Díaz-Asencio, M., Alonso-Hernández, C.M., Bolanos-Álvarez, Y., Gómez-Batista, M., Pinto, V., Morabito, R., Hernández-Albernas, J.I., Eriksson, M., Sanchez-Cabeza, J.A., 2009. One century sedimentary record of Hg and Pb pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar. Pollut. Bull. 59, 108—115.
  • [14] Glasby, G.P., Szefer, P., Geldon, J., Warzocha, J., 2004. Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci. Total Environ. 330, 249—269.
  • [15] Goldberg, E.D., 1963. Geochronology with 210Pb. In: Radioactivity Dating. IAEA, Vienna, 121—131.
  • [16] HELCOM, 2007. HELCOM Baltic Sea Action Plan.
  • [17] HELCOM, 2009. EMEP Centres Joint Report for HELCOM, EMEP/MSC-W TECHNICAL REPORT 2/2009, Atmospheric Supply of Nitrogen, Lead, Cadmium, Mercury and Dioxines/Furanes to the Baltic Sea in 2007.
  • [18] HELCOM, 2011. The Fifth Baltic Sea Pollution Load Compilation (PLC- 5) Balt. Sea Environ. Proc. No. 128.
  • [19] Li, H.B., Yu, S., Li, G.L., Deng, H., 2012. Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 88, 1161—1169.
  • [20] Matsumoto, E., 1987. Pb-210 geochronology of sediments, studies of the San'in Region. Nat. Environ. 3, 187—194.
  • [21] Müller, G., 1979. Schwemetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau 79, 778—783.
  • [22] Mulsow, S., Piovano, E., Cordoba, F., 2009. Recent aquatic ecosystem response to environmental events revealed from 210Pb sediment profiles. Mar. Pollut. Bull. 59, 175—181.
  • [23] Pempkowiak, J., 1991. Enrichment factors of heavy metals in the southern Baltic surface sediments dated with 210Pb and 137Cs. Environ. Int. 17, 421—428.
  • [24] Pempkowiak, J., Cossa, D., Sikora, A., Sanjuan, J., 1998. Mercury in water and sediments of the southern Baltic Sea. Sci. Total Environ. 213, 185—192.
  • [25] Pempkowiak, J., Sikora, A., Biernacka, E., 1999. Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 39, 313—321.
  • [26] Pfitzner, J., Brunskill, G., Zagorskis, I., 2004. 137Cs and excess 210Pb deposition patterns in estuarine and marine sediment in the central region of the Great Barrier Reef Lagoon north-eastern Australia. J. Environ. Radioact. 76, 81—102.
  • [27] Robbins, J.A., 1978. Geochemical and geophysical applications of radioactive lead isotopes. In: Nriagu, J.P. (Ed.), Biogeochemistry of Lead. Elsevier, Amsterdam, 285—393.
  • [28] Roussiez, V., Ludwig, W., Probst, J.-L., Monaco, A., 2005. Background levels of heavy metals in surficial sediments of the 133Cs normalization and lead isotope measurements. Environ. Pollut. 138, 167—177.
  • [29] Rubio, B., Nombela, M.A., Vilas, F., 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar. Pollut. Bull. 40, 968—980.
  • [30] Ruiz-Fernández, A.C., Páez-Osuna, F., Machain-Castillo, M.L., Arellano-Torres, E., 2004. 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Trhuantepec, South Pacific of Mexico. J. Environ. Radioact. 76, 161—175.
  • [31] Sanchez-Cabeza, J.-A., Druffel, E.R.M., 2009. Environmental records of anthropogenic impacts on coastal ecosystems: an introduction. Mar. Pollut. Bull. 59, 87—90.
  • [32] Suplińska, M.M., Pietrzak-Flis, Z., 2008. Sedimentation rates and dating of bottom sediments in the southern Baltic Sea region. Nukleonika 53 (Suppl. 2), S105—S111.
  • [33] Szefer, P., Glasby, G.P., Pempkowiak, J., Kaliszan, R., 1995. Extraction studiem of heavy-metal pollutants in surficial sediments from the southern Baltic Sea of Poland. Chem. Geol. 120, 111—126.
  • [34] Szefer, P., Glasby, G.P., Geldon, J., Renner, R.M., Bjorn, E., Snell, J., Frech, W., Warzocha, J., 2009. Heavy-metals pollution of sediments from the Polish exclusive economic zone, southern Baltic Sea. Environ. Geol. 57, 847—862.
  • [35] Szmytkiewicz, A., Zalewska, T., 2014. Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea). Oceanologia 56 (1), 1—22.
  • [36] Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull. 72, 152—192.
  • [37] Uścinowicz, Sz., 2011. Geological setting and bottom sediments in the Baltic Sea. In: Uścinowicz, Sz (Ed.), Geochemistry of Baltic Sea surface sediments. Polish Geological Institute — National Research Institute, Warsaw, p. 2011.
  • [38] Zaborska, A., Carroll, J.L., Papucci, C., Pempkowiak, J., 2007. Intercomparison of alpha and gamma spectrometry techniques in 210Pb geochronology. J. Environ. Radioact. 93, 38—50.
  • [39] Zaborska, A., Winogradow, A., Pempkowiak, J., 2014. Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. J. Environ. Radioact. 127, 11—25.
  • [40] Zahra, A., Hashni, M.Z., Malik, R.N., Ahmed, Z., 2014. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir. Pakistan. Sci. Total Environ. 470—471, 925—933.
  • [41] Zajączkowski, M., Szczuciński, W., Bojanowski, R., 2004. Recent changes in sediment accumulation rates in Adventfjorden, Svalbard. Oceanologia 46 (2), 217—231.
  • [42] Zalewska, T., Lipska, J., 2006. Contamination of the southern Baltic Sea with 137Cs and 90Sr over the period 2000—2004. J. Environ. Radioact. 91, 1—14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae35c57c-9592-48a3-b052-4b3cbaae15f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.