PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Simultaneous adsorption of heavy metals in complex multi metal system is insuffnciently explored. This research gives results of key process parameters optimization for simultaneous removal of Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution (batch system). New lemon peel-based biomaterial was prepared and characterized by infrared spectroscopy with Fourier transformation (FTIR), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), while the quantifi cation of metals was made by atomic absorption spectrometry (AAS). Simultaneous removal of seven metals ions was favorable at pH 5 with 300 mg/50 mL solidliquid phase ratio, within 60 min at room temperature with total obtained adsorption capacity of 46.77 mg g–1. Kinetic modeling showed that pseudo-second order kinetic and Weber-Morris diffusion models best describe the adsorption mechanism of all seven heavy metals onto lemon peel.
Słowa kluczowe
Rocznik
Strony
46--53
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovin
  • University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovin
  • University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovin
  • University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovin
Bibliografia
  • 1. Nnaji, C.C., Ebeagwu, C.J. & Ugwu, E.I. (2017). Physicochemical conditions for adsorption of lead from water by rice husk ash. BioResources. 12, 799–818. DOI: 10.15376/biores.12.1.799-818.
  • 2. Abdulaziz, M.A., Bakri, A.A., Al-Zahrani, S.A., Al-Zahrani, M.S., Al-Lehebi, A.N., Banjar, F.M. & Nabag, M.I. (2019). Removal of Hexavalent Chromium from Aqueous Solution by the Pod of Acacia gerrardii. Pol. J. Chem. Technol. 21(2), 14–19. DOI: 10.2478/pjct-2019-0014.
  • 3. Shukla, S.R. & Pai, R.S. (2005). Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technol. 96, 1430–1438. DOI: 10.1016/j.biortech.2004.12.010.
  • 4. Chao, H.P., Chang, C.C. & Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J. Ind. Eng. Chem. 20, 3408–3414.
  • 5. Feng, N., Guo, X., Liang, S., Zhu, Y. & Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 185, 49–54. DOI:10.1016/j.jhazmat.2010.08.114.
  • 6. Bhatnagar, A., Minocha, A.K. & Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 48, 181–186. DOI:10.1016/j.bej.2009.10.005.
  • 7. Inagaki, C.S., Caretta, T.D.O., Alfaya, R.V.D.S. & Alfaya, Aa.D.S. (2013). Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu(II), Cd(II), and Pb(II) from industrial effluent. Desalin. Water. Treat. 51, 5537–5546. DOI: 10.1080/19443994.2012.759156.
  • 8. Iqbal, M., Saeed, A. & Zafar S.I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste, J. Hazard. Mater. 164(1), 161–171. DOI:10.1016/j.jhazmat.2008.07.141.
  • 9. Meisam, T.M., Mehdi, A., Alireza, H. & Amir, K. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan. Inst. Chem. Eng. 44, 295–302. DOI:10.1016/j.jtice.2012.11.001.
  • 10. Njikam, E. & Schiewer, S. (2012). Optimization and kinetic modeling of cadmium desorption from citrus peels A process for biosorbent regeneration. J. Hazard. Mater. 213–214, 242–248. DOI:10.1016/j.jhazmat.2012.01.084.
  • 11. Abdić, Š., Memić, M., Šabanović, E., Sulejmanović, J. & Begić, S. (2018). Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste tangerine peel. Int. J. Environ. Sci. Technol. 15, 2511–2518. DOI: 10.1007/s13762-018-1645-7.
  • 12. Nguyen, T.C., Loganathan, P., Nguyen, T.V., Kandasamy, J., Naidu, R. & Vigneswaran, S. (2018). Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environ. Sci. Pol. Res. Int. 25, 20430–20438. DOI: 10.1007/s11356-017-9610-4.
  • 13. Park, J.H., Ok, Y.S., Kim, S.H., Cho, J.S., Heo, J.S., Delaune, R.D. & Seo, D.C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere. 142, 77–83. DOI:10.1016/j.chemosphere.2015.05.093.
  • 14. Šabanović, E., Muhić-Šarac, T., Nuhanović, M. & Memić, M. (2019). Biosorption of Uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. J. Radioanal. Nucl. Chem. 319, 425–435. DOI: 10.1007/s10967-018-6358-3.
  • 15. Schiewer, S. & Patil, S.B. (2008). Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresources Technol. 99, 1896–1903 DOI:10.1016/j.biortech.2007.03.060.
  • 16. Mallampati, R. & Valiyaveettil, S. (2013). Apple PeelsA Versatile Biomass for Water Purifi cation? ACS Appl. Mater. Inter. 5, 4443–4449. DOI: 10.1021/am400901e.
  • 17. Memon, S.Q., Memon, N., Shah, S.W., Khuhawar, M.Y. & Bhanger, M.I. (2007). Sawdust – A green and economical sorbent for the removal of cadmium(II) ions. J. Hazard. Mater. B. 139, 116–121. DOI:10.1016/j.jhazmat.2006.06.013.
  • 18. Özer, A. & Prinççi, H.B. (2006). The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran. J. Hazard. Mater. B. 137, 849–855. DOI:10.1016/j.jhazmat.2006.03.009.
  • 19. Vanderborght, M. & Van Grieken, E. (1977). Enrichment of trace metals in water by adsorption on activated carbon. Anal. Chem. 49, 311–316. DOI: 10.1021/ac50010a032.
  • 20. Lagergren, S.Y. (1898). Zur Theorie der sogenannten Adsorption gelöster Stofe, Kungliga Svenska Vetenskapsakad. Handlingar, 24(4), 1–39.
  • 21. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process. Biochem. 34, 451–465.
  • 22. Weber, W.Jr. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. 89, 31–38.
  • 23. Shen, W., Li, Z. & Liu, Y. (2008). Surface chemical functional groups modification of porous carbon. Recent. Pat. Chem. Eng. 1, 27–40. DOI:10.2174/2211334710801010027.
  • 24. Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S.R.W., Goodarzi, M. & Javadian, H. (2014). Kinetic and equilibrium study of Ni (II) sorption from aqueous solutions onto Peganum harmala-L. Int. J. Environ. Sci. Technol. 11, 1835–1844. DOI: 10.1007/s13762-014-0617-9.
  • 25. Sulejmanović, J., Šabanović, E., Begić, S. & Memić, M. (2019). Molybdenum(VI) oxide-modified silica gel as a novel sorbent for the simultaneous solid-phase extraction of eight metals with determination by flame atomic absorption spectrometry. Anal. Lett. 52, 588–601. DOI:10.1080/00032719.2018.1481418.
  • 26. Thirumavalavan, M., Lai, Y. & Lee, J. (2011). Fourier Transform Infrared Spectroscopic Analysis of Fruit Peels before and after the Adsorption of Heavy Metal Ions from Aqueous Solution. J. Chem. Eng. Data. 56, 2249–2255. DOI: 10.1021/je101262w.
  • 27. Thirumavalavan, M., Lai, Y., Lin, L. & Lee J. (2010). Cellulose-Based Native and Surface Modified Fruit Peels for the Adsorption of Heavy Metal Ions from Aqueous Solution: Langmuir Adsorption Isotherms. J. Chem. Eng. Data, 55, 1186–1192. DOI: 10.1021/je900585t.
  • 28. Arslanoglu, H., Altundogan, H.S. & Tumen, F. (2008). Preparation of cation exchanger from lemon and sorption of divalent heavy metals. Bioresource. Technol. 99, 2699–2705. DOI:10.1016/j.biortech.2007.05.022.
  • 29. Singh, S.A. & Shukla, S.R. (2016). Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. Int. J. Environ. Sci. Technol. 13, 165–178. DOI: 10.1007/s13762-015-0801-6.
  • 30. Elanthikkal, S., Gopalakrishnapanicker, U., Varghese S. & Guthrie J.T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and Characterization. Carbohyd. Polym. 80, 852–859. DOI: 10.1016/j.carbpol.2009.12.043.
  • 31. Mariño, M., Lopes da Silva, L., Durán, N. & Tasic, L. (2015). Enhanced materials from nature: nanocellulose from citrus waste. Molecules. 20, 5908–5923. DOI: 10.3390/molecules20045908.
  • 32. Salih, M.S. (2012). Fourier Transform – Materials Analysis, Rijeka, Croatia: InTech.
  • 33. Janati, S.S.F., Beheshti, H.R., Feizy, J. & Fahim, N.K. (2012). Chemical composition of lemon and peels its considerations as animal food. GIDA- J. Food. 37(5), 267–271.
  • 34. Meisam, T.M. (2013). Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic and thermodynamic studies. Chem. Ind. Chem. Eng. Q. /CICEQ. 19(1), 79–88. DOI: 10.2298/CICEQ120128043T.
  • 35. Coleman, N.T., McClung, A.C. & Moore, D.P. (1956). Formation constants for Cu(II)-peat complexes. Science. 123, 330–331. DOI: 10.1126/science.123.3191.330.
  • 36. OuYang, X.K., Jin, R.N., Yang, L.P., Wen, Z.S., Yang, L.Y., Wang, Y.G. & Wang, C.Y. (2014). Partially hydroliyzed Bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb(II) from aqueous mixtures. J. Agric. Food. Chem. 62, 6007–6015. DOI: 10.1021/jf5015846.
  • 37. Jain, M., Garg, V.K., Kadirvelu, K. & Sillanpää, M. (2015). Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons. Int. J. Environ. Sci. Technol. DOI: 10.1007/s13762-015-0855-5.
  • 38. Mahmood-ul-Hassan, M., Suthor, V., Rafi que, E. & Yasin, M. (2015). Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environ. Monit. Assess. 187, 1–8. DOI: 10.1007/s10661-014-4258-8.
  • 39. Fang, J., Gao, B., Zimmerman, A.R., Roc, K.S. & Chen, J. (2016). Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. RSC Adv. 6, 24906–24911. DOI: 10.1039/c6ra01644h.
  • 40. Al-Baidhani, J.H. & Al-Salihy, S.T. (2016). Removal of Heavy Metals from Aqueous Solution by Using Low Cost Rice Husk in Batch and Continuous Fluidized Experiments. Int. J. Chem. Eng. Appl. 7(1), 6–10. DOI: 10.7763/IJCEA.2016.V7.532.
  • 41. Ramutshatsha-Makhwedzha, D., Ngila, J.C., Ndungu, P.G. & Nomngongo, P.N. (2019). Ultrasound Assisted Adsorptive Removal of Cr, Cu, Al, Ba, Zn, Ni, Mn, Co and Ti from Seawater Using Fe2O3-SiO2-PAN Nanocomposite: Equilibrium Kinetics. J. Mar. Sci. Eng. 7, 133–149. DOI: 10.3390/jmse7050133.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae30a3d1-b4b6-49c3-97ff-62c07d72ae22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.