Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Absorpcja co2 przez ekosystemy lądowe jako sposób na przeciwdziałanie wzrostowi jego stężenia w atmosferze
Języki publikacji
Abstrakty
Carbon dioxide fluxes between ecosystems of the Earth are presented. It was shown that intensifying its absorption of terrestrial ecosystems by 3.2% would prove sufficient to neutralize carbon dioxide emissions from the combustion of fossil fuels and cement production. It was shown that Polish forests absorb 84.6 million tons of CO2/year, that is 26% of emissions from fossil fuel combustion and cement production, while agricultural crops absorb 103 million tons of CO2/year. Total carbon dioxide sequestration by forests and agricultural crops amounts to 187.5 million tons of CO2/year, which is tantamount to 59% of emissions from fossil fuel combustion and cement production. Forestation of marginal soils would further increase carbon dioxide absorption in Poland by 20.6 million tons of CO2/year. Moreover, if plants were sown in order to produce green manure - instead of leaving soil fallow - sequestration could still be boosted by another 6.2 million tons of CO2/year.
Czasopismo
Rocznik
Tom
Strony
213--221
Opis fizyczny
Bibliogr. 49 poz., tab.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 51 538 44 02, fax +48 81 538 19 97
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 51 538 44 02, fax +48 81 538 19 97
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 51 538 44 02, fax +48 81 538 19 97
Bibliografia
- [1] Lindzen R. Global warming: The origin and nature of the alleged scientific consensus. Problemy Ekorozwoju/Problems Sust Develop. 2010;5(2):13-28. http://ekorozwoj.pollub.pl.
- [2] Bucher S. Sustainable development in the world from the aspect of environmental health and human development index: Regional variations and patterns. Problemy Ekorozwoju/Problems Sust Develop. 2016; 12(1):117-124. https://www.researchgate.net/publication/291832736_Sustainable_Development_in_the_World_from_the_Aspect_of_Environmental_Health_and_Human_Development_Index_Regional_Variations_and_Patterns.
- [3] Cel W, Czechowska-Kosacka A, Zhang T. Sustainable mitigation of greenhouse gases emissions. Problemy Ekorozwoju/Problems Sust Develop. 2016;11(1):173-176. http://ekorozwoj.pol.lublin.pl/no21/w.pdf.
- [4] Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science. 2008;319(5867):1235-1238. DOI: 10.1126/science.1152747.
- [5] Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238-1240. DOI: 10.1126/science.1151861.
- [6] Cao Y, Cel W. Sustainable mitigation of methane emission by natural processes. Problemy Ekorozwoju/Problems Sust Develop. 2015;10(1):117-121. https://www.researchgate.net/publication/299512360_Sustainable_mitigation_of_methane_emission_by_natural_processes.
- [7] Dowbor L. Economic democracy - meeting some management challenges. Changing scenarios in Brazil. Problemy Ekorozwoju/Problems Sust Develop. 2013; 8(2): 17-25. http://ekorozwoj.pollub.pl.
- [8] Le Quere C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedligstein P, et al. Global Carbon Budget 2014. Earth System Science Data. 2015;7:47-85. http://www.earth-syst-sci-data.net/7/47/2015/essd-7-47-2015.pdf.
- [9] Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, et al. Carbon emissions from land use and land-cover change. Biogeosciences. 2012;9:5125-5142. DOI: 10.5194,bg-9-5125-2012.
- [10] Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science. 2010;329(5993):834-838. DOI: 10.1126/science.1184984.
- [11] Hilton TW, Davis KJ, Keller K, Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals. Biogeosciences. 2014;11:217-235. DOI: 10.5194/bg-11-217-2014.
- [12] IPCC. 2014 Climate Change 2014. Impact, Adoption, and Vulnerability. Summary for Policymakers. 2014. www.ipcc.ch/report/ar5/wg2/.
- [13] Tans PP, Fung IY, Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science. 1990;247(4949):1431-1438. DOI: 10.1126/science.247.4949.1431.
- [14] Schimel D, Melillo J, Tian H, Mc Guire A.D., Kicklighter D, Kittel T, et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science. 2000;287(5460):2004-2006. DOI: 10.1126/science.287.5460.2004.
- [15] Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature. 2001;414:169-172. DOI: 10.1038/35102500.
- [16] Berthelot M, Friedlingstein P, Ciais P, Monfray P, Dufresne JL, Le Treut H, et al. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeochem Cycles. 2002;16(4):1084-1096. DOI: 10.1029/2001GB001827.
- [17] Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems. 2007;10:171-184. DOI: 10.1007/s10021-006-9013-8.
- [18] Trumper K, Bertzky M, Dickson B, van der Heijden G, Jenkins M, Manning P, et al. The Natural Fix? The Role of Ecosystems in Climate Mitigation. A UNEP Rapid Response Assessment. United Nations Environment Programme. UNEP-WCMC. Cambridge, UK: 2009.
- [19] Yu Z, Beilman DW, Frolking S, Mac Donald GM, Roulette NT, Camill P, et al. Peatlands and their role in the global carbon cycle. Eos. 2011;92(12):97-108. DOI: 10.1029/2011EO120001/pdf.
- [20] Yu ZC. Northern peatland carbon stocks and dynamics: A review. Biogeosciences. 2012;9:4071-4085. DOI: 10.5194/bg-9-4071-2012.
- [21] Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003-1006. DOI: 10.1038/nature07771.
- [22] Phillips OL, Lewis SL. Evaluating the tropical forest carbon sink. Global Change Biology. 2014;20:2039-2041. DOI: 10.1111/gcb.12423.
- [23] Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333(6045):988-993. DOI: 10.1126/science.1201609.
- [24] Post WM, Kwon KC. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biol. 2000;6:317-328. DOI: 10.1046/j.1365-2486.2000.00308.x.
- [25] Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, et al. Current and future CO2 emissions from drained peatlands in southeast Asia. Biogeosciences. 2010;7:1505-1514. DOI: 10.5194/bg-7-1505-2010.
- [26] Miettinen J, Liew SC. Status of peatland degradation and development in Sumatra and Kalimantan. Ambio. 2010;39(5-6):394-401. DOI: 10.1007/s13280-010-0051-2.
- [27] Krüger JP, Leifeld J, Glatzel S, Szidat S, Alewell C. Biogeochemical indicators of peatland degradation - a case study of a temperate bog in northern Germany. Biogeosciences. 2015;12:2861-2871. DOI: 10.5194/bg-12-2861-2015.
- [28] Jones MB, Donnelly A. Carbon sequestration in temperate grassland ecosystems and the influence of management. Climate and elevated CO2. New Phytologist. 2004;164(3):423-439. DOI: 10.1111/j.1469-8137.2004.01201.x.
- [29] Grace J, San Jose J, Meir P, Miranda HS, Montes RA. Productivity and carbon fluxes of tropical savannas. J Biogeogr. 2006;33:387-400. DOI: 10.1111/j.1365-2699.2005.01448.x.
- [30] Grace J, Mitchard E, Gloor E. Perturbations in the carbon budget of the tropics. Global Change Biol. 2004;20:3238-3255. DOI: 10.1111/gcb.12600.
- [31] Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, et al. Forest carbon sinks in the Northern Hemisphere. Ecol Applicat. 2002;12(3):891-899. www.nrs.fs.fed.us/pubs/jrnl/2002/ne_2002_goodale_001.pdf.
- [32] Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science. 2003;300(5625):1538-1542. DOI: 10.1126/science.1093592.
- [33] Pulina M, Burzyk J, Burzyk M. Carbon dioxide in the tundra soils of SW Spitsbergen and its role in chemical denudation. Polish Polar Res. 2003;24(3-4):243-260. http://www.polish.polar.pan.pl/ppr24/ppr24-243.pdf.
- [34] Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG, et al. Resilience and vulnerability of permafrost to climate change. Can J For Res. 2010;40:1219-1236. DOI: 10.1139/X10-060.
- [35] Amundson R. The carbon budget in soils. Annual Rev Earth Planetary Sci. 2001;29:535-562. DOI: 10.1146/annurev.earth.29.1.535.
- [36] Acharya BS, Rasmussen J, Eriksen J. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture Ecosyst Environ. 2012;153:33-39. DOI: 10.1016/j.agee.2012.03.001.
- [37] Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-arctic peat soils: Key functions and microorganisms. ISME J. 2013;7(2):299-311. DOI: 10.1038/ismej.2012.99.
- [38] Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience. 2008;58(8):701-714. DOI: 10.1641/B580807.
- [39] Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp T, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature. 2009;459:556-559. DOI: 10.1038/nature08031.
- [40] Freibauer A, Rounsevell MDA, Smith P, Verhagen J. Carbon sequestration in the agricultural soils of Europe. Geoderma. 2004;122(1):1-23. DOI: 10.1016/j.geoderma.2004.01.021.
- [41] Gaj K. Pochłanianie CO2 przez polskie ekosystemy leśne (Carbon dioxide sequestration by Polish forest ecosystems). Leśne Prace Badawcze. 2012;73(1):17-21. DOI: 10.2478/v10111-012-0002-8.
- [42] Soussana JF, Tallec T, Blanfort V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal. 2009;4(3):334-350. DOI: 10.1017/S1751731109990784.
- [43] Sajnóg N, Wójcik J. Możliwości zagospodarowania gruntów marginalnych i nieużytków gruntowych w scalaniu gruntów (Possibilities of developing degraded and uncultivated lands in land consolidation). Infrastruktura i Ekologia Terenów Wiejskich. Kraków: PAN; 2013;2(II):155-166. http://www.infraeco.pl/pl/art/a_16983.htm?plik=1385.
- [44] Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature. 2001;411:469-472. DOI: 10.1038/35078064.
- [45] Lal R. Managing soil and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience. 2010;60(9):708-721. DOI: 10.1525/bio.2010.60.9.8.
- [46] Statistical Year Book of Agriculture. Główny Urząd Statystyczny; Warszawa: 2014. http://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3328/6/9/1/statistical_yearbook_of_agriculture_2014.pdf.
- [47] Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage. 2004;20:219-230. DOI: 10.1079/SUM2003234.
- [48] Carvajal M. Investigation into CO2 absorption of the most representative agricultural crops of the region of Murcia. CSIC Report. 2010. http://www.lessco2.es/pdfs/noticias/ponencia_cisc_ingles.pdf.
- [49] Soussana JF, Allarda V, Pilegaardb K, Ambusb P, Ammanc C, Campbelld C, et al. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine european grassland sites. Agricult Ecosystems Environ. 2007;121:121-134. DOI: 10.1016/j.agee.2006.12.022.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae2d8c5a-47d6-4d55-a9e6-3ee36c8ae538