PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The application of Vacuum Insulated Tubing in Deep Borehole Heat Exchangers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The world’s demand for energy is constantly increasing mainly due to population growth and improved living standards. Currently, the share of electricity generation is 37 of the global primary energy consumption. Fossil-based electricity production is accounted for 68 of the total generation with coal, the most carbon-intensive fossil fuel, being the largest contributor (41) to the world’s electricity supply in 2012. Electricity demand is projected to grow rapidly and is also expected to be 70 higher in 2035, than the current demand. The Polish energy sector is heavily dependent on coal, resulting in large CO2 emission per capita. Poland has considerable potential for geothermal energy production, as there is a large number of deep, abandoned wells that might be utilized for geothermal energy production. Utilizing these resources would contribute to the CO2 emission reduction without negative impact on security of energy supply. Following paper describes method of reconstructing negative or abandoned oil and gas wells for Deep Borehole Heat Exchangers (DBHE). In many old boreholes, exploiting underground geothermal waters is impossible, thus adaptation for DBHE is sometimes the only option to utilize geothermal heat reservoirs. The insulated coaxial inner column which enables the circulation of heat carrier plays the crucial role in effective functioning of DBHE systems. Vacuum Insulated Tubing (VIT) can improve heat production as well as increase efficient energy use. This technique found plethora of applications in offshore and onshore deep drilling and production. Throughout recent years, VIT technology is being more commonly applied in geothermal industry. Negative or abandoned wells could be reconstructed for DBHE. To maximize the heat uptake from such boreholes, it is advised to use inner column made from material with lowest possible thermal conductivity coefficient. Article deals with possible application of vacuum pipes as inner column in deep coaxial borehole heat exchangers.
Rocznik
Strony
597--617
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
  • University of Stavanger, Faculty of Science and Technology
autor
  • University of Stavanger, Faculty of Science and Technology
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
Bibliografia
  • [1] Dincer I., Rosen M.A.: Thermal Energy Storage: Systems and Applications. 2nd ed. Wiley, London 2011.
  • [2] Jaszczur M., Polepszyc I., Sapinska-Sliwa A.: Numerical analysis of the boundary conditions model impact on the estimation of heat resources in the ground. Polish Journal of Environmental Studies 24/5A (2015), pp. 60-66.
  • [3] Jaszczur M., Sliwa T.: A Long-term Analysis of a borehole Heat Exchanger System, Proceedings ECCOMAS Special Interest Conference. Numerical Heat Transfer 2012, 4-6.10.2012 Gliwice-Wrocław, Poland.
  • [4] Kurevija T., Vulin D., Krapec V.: Effect of borehole array geometry and thermal interferences on geothermal heat pump system. Energy Conversion and Management, 60, 2012, pp. 134-142,
  • [5] Li M., Li P., Chan V., Lai ACK.: Full-scale temperature response function (G-function) for heat transfer by borehole ground heat exchangers (GHEs) from sub-hour to decades. Applied Energy, 136, 2014, pp. 197-205.
  • [6] Sliwa T., Rosen M.A.: Natural and Artificial Methods for Regeneration of Heat Resources for Borehole Heat Exchangers to Enhance the Sustainability of Underground Thermal Storages: A Review. Sustainability, 7/10, 2015, pp. 13104-13125,
  • [7] Tomaszewska B., Pająk L.: Geothermal Water Resources Management–Economic Aspects of their Treatment. Mineral Resources Management [Gospodarka Surowcami Mineralnymi], 28/4, 2012, pp. 59-70, https://www.min-pan.krakow.pl/Wydawnictwa/GSM284/tomaszewska-pajak.pdf [24.08.2016].
  • [8] Sliwa T, Kotyza J.: Application of existing wells as ground heat source for heat pumps in Poland. Applied Energy, 74, 2003, pp. 3-8.
  • [9] Knez D.: Stress State Analysis in Aspect of Wellbore Drilling Direction. Arch. Min. Sci., 59/1, 2014, pp. 7169-764, http://mining.archives.pl/index.php/index.php?option=com_remository&Itemid=0&func=fileinfo&id=705&lang=pl [24.08.2016].
  • [10] Zarrella A., Capozza A., De Carli M.: Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison. Applied Energy,112, 2013, pp. 358-370.
  • [11] Zarrella A., De Carli M.: Heat transfer analysis of short helical borehole heat exchangers. Applied Energy, 102, 2013, pp. 1477-1491.
  • [12] Li M., Lai ACK.: Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers. Applied Energy, 96, 2012, pp. 451-458.
  • [13] Sliwa T.: System grzewczo-chłodniczy na bazie wymienników otworowych z bezpośrednim parowaniem czynnika roboczego w centrum Pałecznicy [Heating and refrigeration system based on borehole heat exchangers with direct evaporation in the center of Pałecznica]. Proceedings of Conference „Efektywność energetyczna w gminach na przykładzie Pałecznicy” [Energy efficiency in communes on example of the village Pałecznica], Pałecznica 16 października 2014 r., red. Tomasz Śliwa, pp. 1-9.
  • [14] Sapinska-Sliwa A., Rosen A.M., Gonet A., Sliwa T.: Deep Borehole Heat Exchangers- A Conceptual Review. Proceedings World Geothermal Congress 2015, Melbourne, Australia 19-25 April 2015.
  • [15] Sliwa T., Gonet A., Sapinska-Sliwa A., Knez D., Jezuit Z.: Applicability of Borehole R-1 as BHE for Heating of a Gas Well. Proceedings World Geothermal Congress 2015, Melbourne, Australia 19-25 April 2015.
  • [16] Sliwa T., Nowosiad T., Vytyaz O., Sapinska-Sliwa A.: Study On The Efficiency Of Deep Borehole Heat Exchangers. SOCAR Proceedings, Reservoir and Petroleum Engineering, No. 2, 2016, pp. 029-042.
  • [17] HELIX Oilfield Services, Company Brochure.
  • [18] IMEX Canada Inc., Company Brochure.
  • [19] Lombard S.M.: What Every Engineer Should Know About Vacuum Insulated Tubing. SPE, Oil Tech Services Inc., SPE 153837, 2012.
  • [20] Vallourec Tube-Alloy, Company Brochure.
  • [21] Morita K.: One Possible Way to Utilize Abandoned Deep Wells - the Application of the DCHE. Proceedings Geothermal Energy in Underground Mines, Ustroń, Poland, 2001.
  • [22] Rubik M.: Pompy ciepła Poradnik. Branżowy Ośrodek Informacji Naukowej, Technicznej i Ekonomicznej „Instal”, Warszawa 1996.
  • [23] Sliwa T., Gonet A.: Theoretical model of borehole heat exchanger. Journal of Energy Resources Technology, vol. 127, No. 2, 2005, pp. 142-148.
  • [24] Kohl T., Brenni R., Eugster W.: System performance of a deep borehole heat exchanger. Geothermics, 31, 2002, pp. 687-708.
  • [25] Sliwa T., Kotyza J.: Dobór optymalnego otworowego wymiennika ciepła w otworze Jachówka 2K do głębokości 2870 m [Selection of optimal construction of borehole heat exchangers based on Jachówka 2K well to a depth 2870 m]. in: Sokołowski J. (ed)., Metodyka i technologia uzyskiwania użytecznej energii geotermicznej z pojedynczego otworu wiertniczego [Methodology and technology of obtaining usable energy from a single geothermal borehole]. PGA, Polgeotermia, PAN, Kraków 2000, pp. 251-284.
  • [26] Busser G.C., Sliwa T.: The use of GRE (fiberglass) tubulars in oil - gas - geothermal industry. Proceedings: 15th International Scientific and Technical Conference “New Methods and Technologies in Petroleum Geology, Drilling and Reservoir Engineering”, WWNiG AGH, Kraków2004, pp. 21-28.
  • [27] Dijkshoorn L., Speer S., Pechnig R.: Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. International Journal of Geophysics, Article ID 916541, 2013, p. 14.
  • [28] Sapinska-Sliwa A., Rosen M.A., Gonet A., Sliwa T.: Deep borehole heat exchangers - a conceptual and comparative review. International Journal of Air-Conditioning and Refrigerationvol, 24, Iss. 1, 2016, pp. 1-15, art. No. 1630001.
  • [29] Gonet A., Sliwa T., Stryczek S., Sapińska-Sliwa A., Jaszczur M., Pająk L., Złotkowski A.: Metodyka identyfikacji potencjału cieplnego górotworu wraz z technologią wykonywania i eksploatacji otworowych wymienników ciepła. Wydawnictwa AGH, Kraków 2011.
  • [30] Szostak L.: Wiertnictwo. Wydawnictwa Geologiczne, Warszawa 1989.
  • [31] Azzola J.H., Richey J. F.: The Heat Transfer Characteristics of Vacuum Insulated Tubing. SPE 90151, Tube-Alloy Products, 2004.
  • [32] Kang Y., Saumel R., Gonzales A., Liu Z., Halliburton: Heat Transfer Modelling of Wellbore with Vacuum Insulated Tubing (VIT). SPE 178449 MS, 2015.
  • [33] Moe B., Erpelding P.: Annular pressure buildup: What is and what to do about it. Oil Technology Services Inc., Houston 2005.
  • [34] http://geotermia.pl/energia-geotermalna-na-podhalu/ [09.04.2017].
  • [35] Gonet A., Stryczek S., Rzyczniak M.: Projektowanie otworów wiertniczych. Wydawnictwa AGH, Kraków 1996.
  • [36] Kizilkan O., Dincer I.: Borehole thermal energy storage system for heating applications: Thermodynamic performance assessment. Energy Conversion and Management, 90, 2015, pp. 53-61.
  • [37] Sliwa T., Gonet A., Munia J., Kozioł W., Pająk L.: Nowy kierunek wykorzystania odwiertów przeznaczonych do likwidacji [New direction of abandon wells reuse]. Proceedings: Problemy rekonstrukcji i likwidacji odwiertów ropnych i gazowych w Karpatach i na Przedgórzu: I konferencja naukowo-techniczna: Rudawka Rymanowska-Bóbrka, 11-13 października 2000 r. PGNiG S.A. O/ZRG Krosno; SITPNiG O/Krosno, 2000, pp. 7-1-7-14.
Uwagi
EN
The paper was created within statute studies at the Faculty of Drilling, Oil and Gas at AGH University of Science and Technology in Krakow, Poland. Grant No. 11.11.190.555
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae2d49a2-2f6d-4bf0-91cb-06171205495b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.