PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In medical terms, fenestration stands for an anomaly within the circulatory system in which the blood vessel lumen is divided into two separate channels that rejoin in the distal part of this vessel. The primary objective of this research was to analyze the impact of the left vertebral artery (LVA) and basilar artery (BA) fenestrations on the blood flow characteristics in their regions and downstream, in the cerebral circulation. The geometrical data, obtained from the angio-Computed Tomography, were the basis for the generation of a 3D model in SolidWorks 2015. In order to observe the flow characteristics within the whole spatial domain, computational fluid dynamics was involved in performing simulations of the blood flow in the patient-specific arterial system (beginning with the aortic arch and finishing with the Circle of Willis). To examine the flow distribution changes resulting from altered fenestration geometries, additional models were built. The blood flow velocity, volume flow rate and shear stress distribution were analyzed within this study. It was proven that the length/size/ position of the fenestration altered the flow characteristics in different manners. The investigations showed that the patient-specific LVA, at the V3 section (extracranial part of the artery located between the spine and the skull), is not a reason of aneurysm formation. However, BA fenestration at the proximal segment might be a possible reason of future aneurysm formation. It was proven that the computational fluid dynamics tool could support medical diagnostic procedures and multivessel brain vascular disease treatment planning.
Twórcy
autor
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
  • Norbert Barlicki Memorial Teaching Hospital No. 1, Medical University of Lodz, Poland
autor
  • Norbert Barlicki Memorial Teaching Hospital No. 1, Medical University of Lodz, Poland
autor
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
Bibliografia
  • [1] Hoogstraten HW, Kootstra JG, Hillen B, Krijgert JKB, Wensing PJW. Numerical simulation of blood with two successive flow in an artery bends. J Biomech 1996;29(8):1075–83.
  • [2] Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 2011;44(11):2021–30.
  • [3] Yilmaz F, Gundogdu MY. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions rheology, viscosity models, and physiologic conditions. Korea-Aust Rheol J 2008;20(4):197–211.
  • [4] Kaewbumrung M, Wiwatanapataphee B, Orankitjaroen S, Siriapisith T. Numerical Simulation of Turbulent Blood Flow in the System of Coronary Arteries with Stenosis. J Biometr Biostat 2017;8(344):2.
  • [5] Papadopoulos KP, Gavaises M, Pantos I, Katritsis DG, Mitroglou N. Derivation of flow related risk indices for stenosed left anterior descending coronary arteries with the use of computer simulations. Med Eng Phys 2016;38(9): 929–39.
  • [6] Razavi SE, Sahebjam R. Numerical simulation of the blood flow behavior in the circle of Willis. BioImpacts 2014;4 (2):89–94.
  • [7] Reorowicz P, Obidowski D, Klosiński P, Szubert W, Stefańczyk L, Jóźwik K. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech 2014;47:1642–51.
  • [8] Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J. CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranial Aneurysms. Med Image Comput Computer-Assist Interv 2006;9(Pt 2):438–45.
  • [9] Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE. Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 2013;51:1061–73.
  • [10] Tsuei YS, Matsumoto Y, Ohta M, Nakayama T, Ezura M, Takahashi A. Vertebrobasilar junction fenestration with dumbbell-shaped aneurysms formation: computational fluid dynamics analysis. Surg Neurol 2009;72:S11–9.
  • [11] Rennert J, Ullrich WO, Schuierer G. A Rare Case of Supraclinoid Internal Carotid Artery (ICA) Fenestration in Combination with Duplication of the Middle Cerebral Artery (MCA) Originating from the ICA Fenestration and an Associated Aneurysm. Clin Neuroradiol 2013;23:133–6.
  • [12] Uchino A, Sawada A, Takase Y, Fujita I, Kudo S. Extreme fenestration of the basilar artery associated with cleft palate, nasopharyngeal mature teratoma, and hypophyseal duplication. Eur Radiol 2002;12:2087–90.
  • [13] Dimmick SJ, Faulder KC. Normal Variants of the Cerebral Circulation at Multidetector CT Angiography. Radiographics 2009;29:1027–43.
  • [14] Uchino A, Saito N, Okada Y, Kozawa E, Nishi N, Mizukoshi W, et al. Fenestrations of the intracranial vertebrobasilar system diagnosed by MR angiography. Neuroradiology 2012;54:445–50.
  • [15] Ples H, Loukas M, Jacob N, Andall NR, Miclaus GD, Tubbs RS, et al. Duplication of the distal end of the left vertebral artery with the fenestration of the right posterior cerebral artery. Rom J Morphol Embryol 2015;56:575–7.
  • [16] Fortuniak J, Bobeff E, Polguj M, Kośla K, Stefańczyk L, Jaskólski DJ. Anatomical anomalies of the V3 segment of the vertebral artery in the Polish population. Eur Spine J 2016;25.12:4164–70.
  • [17] Tyfa Z, Strzelecki M. MeMoS – a software tool for extraction of anatomical structures data from 3D medical images. In IEEE 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). 2016. pp. 97–102.
  • [18] Ahmed S, Sutalo ID, Kavnoudias H, Madan A. Numerical Investigation of Hemodynamics of Lateral Cerebral Aneurysm Following Coil Embolization. Eng Appl Comput Fluid Mech 2011;5(3):329–40.
  • [19] Geers AJ, Larrabide I, Morales HG, Frangi AF. Approximating hemodynamics of cerebral aneurysms with steady flow simulations. J Biomech 2014;47:178–85.
  • [20] Jodko D, Obidowski D, Reorowicz P, Jóźwik K. Simulations of the blood flow in the arterio-venous fistula for haemodialysis. Acta Bioeng Biomech 2014;16(1):69–74.
  • [21] Celik IB, Ghia U, Roache PJ, Freitas CJ. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 2008;130(7).
  • [22] Jóźwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries. J Biomech 2010;43:177–85.
  • [23] Polanczyk A, Podyma M, Stefanczyk L, Szubert W, Zbicinski I. A 3D model of thrombus formation in a stent-graft after implantation in the abdominal aorta. J Biomech 2015;48(3): 425–31.
  • [24] Pawelski S, editor. Diagnostyka laboratoryjna w hematologii. Państwowy Zakład Wydawnictw Lekarskich; 1990.
  • [25] Boger, D.V., & Halmos, A.L., Non-Newtonian Flow I – Characterization of Fluid Behaviour, materials of Department of Chemical Engineering, Monash University, Australia.
  • [26] Jodko D, Obidowski D, Reorowicz P, Jóźwik K. Blood flows in end-to-end arteriovenous fistulas: Unsteady and steady state numerical investigations of three patient-specific cases. Biocybern Biomed Eng 2017.
  • [27] Schmidt RF, Lang F, Heckmann M. Physiologie des Menschen mit Pathophysiologie, 31; 2010.
  • [28] Liu Y. A lattice Boltzmann model for blood flows. Appl Math Model 2012;36(7):2890–9.
  • [29] Paul MC, Molla MM, Roditi G. Large-Eddy simulation of pulsatile blood flow. Med Eng Phys 2009;31:153–9.
  • [30] Valen-Sendstad K, Mardal KA, Mortensen M, PettersonReif BA, Langtangen HP. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J Biomech 2011;44:2826–32.
  • [31] Gouberqrits L, Osman J, Mevert R, Kertscher U, Pothkow K, Hege HC. Turbulence in blood damage modelling. Int J Artif Organs 2016;39(4):160–5.
  • [32] Tang AYS, Fan Y, Cheng SWK, Chow KW. Biomechanical factors influencing type b thoracic aortic dissection: computational fluid dynamics study. Eng Appl Comput Fluid Mech 2012;6(4):622–32.
  • [33] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91(1):327–87.
  • [34] Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 2007;49(25):2379–93.
  • [35] Oktar SO, Yucel C, Karaosmanoglu D, Akkan K, Ozdemir H, Tokgoz N, et al. Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase. Am J Neuroradiol 2006;27:363–9.
  • [36] Chavhan GB, Parra DA, Mann A, Navarro OM. Normal Doppler spectral waveforms of major pediatric vessels: specific patterns. Radiographics 2008;28(3):691–706.
  • [37] Ford MD, Alperin N, Lee SH, Holdsworth DW, Steinman DA. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 2005;26(4):477.
  • [38] Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn Reson Med 2002;47(1): 149–59.
  • [39] Buchmann NA, Yamamoto M, Jermy M, David T. Particle image velocimetry (PIV) and computational fluid dynamics (CFD) modelling of carotid artery haemodynamics under steady flow: a validation study. J Biomech Sci Eng 2010;5 (4):421–36.
  • [40] Cebral JR, Yim PJ, Lohner R, Soto O, Marcos H, Choyke PJ. New methods for computational fluid dynamics modeling of carotid artery from magnetic resonance angiography. Proc SPIE 2001;4321:177–87.
  • [41] Heffernan KS, Lefferts WK, Augustine JA. Hemodynamic correlates of late systolic flow velocity augmentation in the carotid artery. Int J Hypertens 2013;2013.
  • [42] Wake-Buck AK, Gatenby JC, Gore JC. Hemodynamic characteristics of the vertebrobasilar system analysed using MRI-based models. PLOS ONE 2012;7(12):e51346.
  • [43] Seidel E, Eicke BM, Tettenborn B, Krummenauer F. Reference values for vertebral artery flow volume by duplex sonography in young and elderly adults. Stroke 1999;30 (12):2692–6.
  • [44] Kizilkilic O, Hurcan C, Mihmanli I, Oguzkurt L, Yildirim T, Tercan F. Color Doppler analysis of vertebral arteries. J Ultrasound Med 2004;23(11):1483–91.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae251158-3d1c-4bd8-ba2b-e653fa809666
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.