PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of performance characteristics of the environmentally friendly cutting fluid with zinc aspartate

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena właściwości eksploatacyjnych proekologicznej cieczy chłodząco-smarującej zawierającej asparaginian cynku
Języki publikacji
EN PL
Abstrakty
EN
The effect of the cutting fluid with zinc aspartate on the quality of the workpiece surface layer is reported. Until now, zinc aspartate has been used primarily in medicine and pharmacology. This paper compares the ecological cutting fluid containing zinc aspartate with a classic mineral oil-based coolant. Toxicity tests and a controlled process of tool wear during face turning were performed. Test results indicate that the use of zinc aspartate-based cutting fluids contributes to the reduction of the material roughness parameter values up to 35%, benefitting the final quality of the workpiece.
PL
W pracy przedstawiono wyniki badań wpływu cieczy chłodząco-smarującej z asparaginianem cynku na jakość technologiczną warstwy wierzchniej obrabianych elementów. Asparaginian cynku dotychczas nie był stosowany w takich rozwiązaniach, głównie wykorzystywany był w medycynie i farmakologii. W badaniach przeprowadzono analizę porównawczą proekologicznego chłodziwa zawierającego asparaginian cynku z klasycznym chłodziwem opartym na bazie oleju mineralnego. Ciecze chłodząco-smarujące poddano badaniom toksyczności oraz wykonano kontrolowany proces eksploatacji narzędzi w czasie toczenia poprzecznego. Wyniki badań wskazują, że zastosowanie chłodzenia cieczą na bazie asparaginianu cynku redukuje parametry chropowatości obrabianego materiału nawet o 35%, korzystnie wpływając na jakość finalną detalu.
Rocznik
Strony
465--471
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Mechanical Design Kielce University of Technology, Al. 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Department of Mechanical Design Kielce University of Technology, Al. 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Department of Mechanical Design Kielce University of Technology, Al. 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Brinksmeier E, Meyer D, Huesmann-Cordes A G, Herrmann C. Metalworking fluids - Mechanisms and performance. CIRP Annals - Manufacturing Technology 2015; 64(2): 605-628, https://doi.org/10.1016/j.cirp.2015.05.003.
  • 2. Jain A, Kumar S, Bajpai V, Wook Park H. Replacement of Hazard Lubricants by Green Coolant in Machining of Ti6Al4V: A 3D FEM Approach. The International Journal of Precision Engineering and Manufacturing 2019; 20 (6): 1027-1035, https://doi.org/10.1007/s12541-019-00111-2.
  • 3. Kępczak N, Rosik R, Pawłowski W, Sikora M, Witkowski B, Bechciński G, Stachurski W. The dynamics of wear of cutting inserts during turning of non-homogeneous material on the example of polymer concrete. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 3 (20): 478-483, https://doi.org/10.17531/ein.2018.3.18.
  • 4. Kowalczyk J. Ocena właściwości wybranych proekologicznych cieczy chłodząco-smarujących w systemach tribologicznych z powłokami przeciwzużyciowymi. Rozprawa doktorska, Kielce: PŚk Pubisher, 2019.
  • 5. Kumar B S, Padmanabhan G, Krishna P V. Experimental Investigations of Vegetable Oil Based Cutting Fluids with Extreme Pressure Additive in Machining of AISI 1040 Steel. Manufacturing Science and Technology 2015, 3: 1-9.
  • 6. Li K M, Liang S Y. Performance profiling of minimum quantity lubrication in machining. The International Journal of Advanced Manufacturing Technology 2007; 35: 226-233, https://doi.org/10.1007/s00170-006-0713-1.
  • 7. Maruda R, On the surface roughness of 316L austenitic stainless steel after turning when cooling with MQCL method. Mechanik 2016; 8-9: 1058-1059, https://doi.org/10.17814/mechanik.2016.8-9.246.
  • 8. Maruda R W, Feldshtein E E, Legutko S, Królczyk G M. Improving the efficiency of running-in for a bronze-stainless steel friction pair. Journal of Friction and Wear 2015; 36 (6): 548-553, https://doi.org/10.3103/S1068366615060082.
  • 9. Maruda R W, Królczyk G M, Wojciechowski Sz, Żak K, Habrat W, Niesłony P. Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. Journal of Mechanical Science and Technology 2018; 32 (2): 1585-1591, https://doi.org/10.1007/s12206-018-0313-7.
  • 10. Maruda R W, Legutko S, Królczyk G M, Hloch S, Michalski M. An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions. International Journal of Surface Science and Engineering 2015; 9 (5): 452-465, https://doi.org/10.1504/IJSURFSE.2015.072069.
  • 11. McNutt J, He Q. Development of biolubricants from vegetable oils via chemical modification. Journal of Industrial Engineering Chemistry 2016; 36: 1-12, https://doi.org/10.1016/j.jiec.2016.02.008.
  • 12. Microbiology - 100778 Cult-Dip combi - instrukcja badania toksyczności, test bakteriologiczny.
  • 13. Norma PN-ISO 3685 Badanie trwałości noży tokarskich punktowych.
  • 14. Ozcelik B, Kuram E, Huseyin C M, Demirbas E. Experimental investigations of vegetable based cutting fluids with extreme pressure during turning of AISI 304L. Tribology International 2011, 44: 1864-1871, https://doi.org/10.1016/j.triboint.2011.07.012.
  • 15. Park K H, Yang G D, Lee D Y. Tool wear analysis on coated and uncoated carbide tools in inconel machining. International Journal of Precision Engineering and Manufacturing 2015; 16(7): 1639-1645, https://doi.org/10.1007/s12541-015-0215-x.
  • 16. Płaza S, Margielewski L, Celichowski G. Wstęp do tribologii i tribochemia, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2005.
  • 17. Sartori S, Taccin M, Pavese G, Ghiotti A, Bruschi S. Wear mechanisms of uncoated and coated carbide tools when machining Ti6Al4V using LN2 and cooled N2. The International Journal of Advanced Manufacturing Technology 2018; 95(1 - 4): 1255-1264, https://doi.org/10.1007/s00170-017-1289-7.
  • 18. Styp-Rekowski M, Matuszewski M, Oborski I L. Possibilities of some constructional materials cutting by means of water-abrasive jet. Journal of Polish CIMAC 2012; 7 (3): 293-300.
  • 19. Trajano M F, Moura E I F, Ribeiro K S B, Alves S M. Study of oxide nanoparticles as additives for vegetable lubricants. Journal of Materials Research 2014, 17, 1124-1128, https://doi.org/10.1590/1516-1439.228213.
  • 20. Wartacz A, Świć A, Zubrzycki J. The waste of tool blade, and a change of turning parameters in next cuts. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2004; 4 (24): 58-61.
  • 21. Yadav G, Tiwari S, Jain M L. Tribological analysis of extreme pressure and anti-wear properties of engine lubricating oil using four ball tester. Materials Today: Proceedings 2018; 5: 248-253, https://doi.org/10.1016/j.matpr.2017.11.079.
  • 22. Yoon H S, Kim M S, Jang K H, Ahn S H. Future perspectives of sustainable manufacturing and applications based on research databases. The International Journal of Precision Engineering and Manufacturing 2016; 17(9): 1249-1263, https://doi.org/10.1007/s12541-016-0150-5.
  • 23. Zaleski K. The metod of investigations of lubricating properties of cutting fluids, Eksploatacja i Niezawodnosc - Maintenance and Reliability 2004; 4 (24): 62-65.
  • 24. Zhang J L, Rao P N. Green/Sustainable Manufacturing-Evaluation of a Soybean-Based Metal Cutting Fluid in Turning Operation. Applied Mechanics and Materials 2013, 392: 925-930, https://doi.org/10.4028/www.scientific.net/AMM.392.925.
  • 25. Zhang J, Rao P N, Eckman M. Evaluation of bio-based cutting fluids in using multiple quality characteristics through Taguchi design method. International Journal Modern Engineering 2012, 12: 35-44.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae24521e-0b4c-4dca-ac64-4d16d6f6e382
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.