Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the manufacturing sector, the processing of magnesium alloys through the liquid casting route is one of the promising methods to manufacture automotive and aircraft components, for their excellent mechanical properties at the lower weight. Investment casting process has the great cabaility to produce near net shape complex castings for automotive and aircraft applications. The distinct and attractive engineering properties of magnesium alloys have shown to be promising in terms of its potential to replace materials such as cast iron, steel, and aluminum In this regard, the efforts to develop processing technology for these alloys for their wide range of applications in industries have been reported by the scientific and engineering community. For successful production of magnesium alloy castings, it requires specialized foundry techniques because of the particular chemical and physical properties of magnesium; especially the reactive and oxidative nature of these alloys. The industry is young enough, to tap the potential.
Czasopismo
Rocznik
Tom
Strony
19--23
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Charotar University of Science and Technology (CHARUSAT), Chandubhai S. Patel Institute of Technology, Department of Mechanical Engineering, India
autor
- Charotar University of Science and Technology (CHARUSAT), Chandubhai S. Patel Institute of Technology, Department of Mechanical Engineering, India
Bibliografia
- [1] Kulekci, M.K. (2008). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology. 39(9), 851-865. DOI: https://doi.org/10.1007/s00170-007-1279-2.
- [2] Miller, L. (1999). Casting the new millennium. Proceedings 31st Australian Foundry Institute Convention. Wollongong, NSW, Keynote Address. (p.14).
- [3] Avedesian, M.M. & Baker, H. (1999). Magnesium and magnesium alloys. ASM Speciality Handbook Series, ASM International, Materials Park, Ohio, USA.
- [4] Vyas, A.V. & Sutaria, M.P. (2021). Investigation on influence of the cast part thickness on interfacial mold–metal reactions during the investment casting of AZ91 magnesium alloy. International Journal of Metalcasting. 15(3), 1021-1030. DOI: https://doi.org/10.1007/s40962-020-00530-2.
- [5] Vyas, A.V. & Sutaria, M. (2020). Investigation on reactions at corners of cast part during investment casting of reactive AZ91 Magnesium Alloy. Archives of Foundry Engineering. 20(4), 139-144. DOI: 10.24425/afe.2020.133360.
- [6] Vyas, A.V., Ayar, V.S. & Sutaria, M.P. (2020). Investigation on reactive wetting during investment casting of magnesium alloy AZ91. Materials Today: Proceedings. 26, 2452-2457. DOI: https://doi.org/10.1016/j.matpr.2020.02.521.
- [7] Kumar, N.R., Blandin, J.J., Suery, M. & Grosjean, E. (2003). Effect of alloying elements on the ignition resistance of magnesium alloys. Scripta Materialia. 49(3), 225-230. DOI: https://doi.org/10.1016/S1359-6462(03)00263-X.
- [8] Allen, F. & Brace, A. (1957). Magnesium Casting Technology. Reinhold Publishing Corporation, New York.
- [9] Jafari, H., Idris, M.H., Ourdjini, A. & Farahany, S. (2013). In situ melting and solidification assessment of AZ91D granules by computer-aided thermal analysis during investment casting process. Materials and Design. 50, 181-190. DOI: https://doi.org/10.1016/j.matdes.2013.02.035.
- [10] Jafari, H., Idris, M.H., Ourdjini, A. & Kadir, M.A. (2012). Effect of flux on in-situ melting shell investment casting of AZ91D magnesium alloy. In International Conference on Thermal, Material and Mechanical Engineering (ICTMME’2012), July, 15-16.
- [11] Jafari, H., Idris, M.H., Ourdjini, A. & Kadir, M.R.A. (2013). Influence of flux on melting characteristics and surface quality of in-situ melting AZ91D. Materials and Manufacturing Processes. 28(2), 148-153. DOI: https://doi.org/10.1080/10426914.2012.746787.
- [12] Pettersen, G., Ovrelid, E., Tranell, G., Fenstad, J. & Gjestland, H. (2002). Characterisation of the surface films formed on molten magnesium in different protective atmospheres. Materials Science and Engineering: A. 332(1-2), 285-294. DOI: https://doi.org/10.1016/S0921-5093(01)01750-6.
- [13] Friedrich, H., Mordike, B. (2006). Magnesium Technology: Metallurgy. Design Data, Applications. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-30812-1.
- [14] Piwonka, T.S. (1994). Reactions at the mold/metal interface in investment castings. In Investment Casting Institute 42nd Annual Meeting, (p. 15).
- [15] Pattnaik, S., Karunakar, D.B., & Jha, P.K. (2012). Developments in investment casting process—a review. Journal of Materials Processing Technology. 212(11), 2332-2348. DOI: 10.1016/j.jmatprotec.2012.06.003.
- [16] Carniglia, S.C. & Barna, G.L. (1992). Handbook of industrial refractories technology: principles, types, properties and applications. New York: Noyes Publications.
- [17] Kim, M.G. & Kim, Y.J. (2002). Investigation of interface reaction between TiAl alloys and mold materials. Metals and Materials International. 8(3), 289-293. DOI: https://doi.org/10.1007/BF03186098.
- [18] Hao, Y., Liu, J., Du, J., Zhang, W., Xiao, Y., Zhang, S. & Yang, P. (2020). Effects of mold materials on the interfacial reaction between magnesium alloy and ceramic shell mold during investment casting. Metals. 10(8), 991-1005. DOI: https://doi.org/10.3390/met10080991.
- [19] Lopes, V., Puga, H., Barbosa, J. & Teixeira, J.C. (2020). Effect of yttria mould coating on the investment casting of AZ91D-1 wt% CaO magnesium alloy. International Journal of Metalcasting. 14(1), 98-107. DOI: 10.1007/s40962-019-00339-8.
- [20] Sin, S.L., Dube, D. & Tremblay, R. (2006). Interfacial reactions between AZ91D magnesium alloy and plaster mould material during investment casting. Materials Science and Technology. 22(12), 1456-1463. DOI: https://doi.org/10.1179/174328406X148804.
- [21] Sumida, M., Jung, S. & Okane, T. (2009). Solidification microstructure, thermal properties and hardness of magnesium alloy 20 mass% Gd added AZ91D. Materials Transactions. 50(5), 1161-1168. DOI: https://doi.org/10.2320/matertrans.F-M2009802.
- [22] Srinivasan, A., Ningshen, S., Mudali, U.K., Pillai, U.T.S. & Pai, B.C. (2007). Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy. Intermetallics. 15(12), 1511-1517. DOI: https:10.1016/j.intermet. 2007.05.012.
- [23] Pan, F., Yang, M. & Chen, X. (2016). A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. Journal of Materials Science & Technology. 32(12)12, 1211-1221. DOI: https://doi.org/ 10.1016/j.jmst.2016.07.001.
- [24] Blawert, C., Hort, N. & Kainer, K.U. (2004). Automotive applications of magnesium and its alloys. Transaction of the Indian Institute of Metals. 57(4), 397-408.
- [25] Dobrzanski, L.A., Tanski, T., Cizek, L. & Brytan, Z. (2007). Structure and properties of magnesium cast alloys. Journal of Materials Processing Technology. 192, 567-574. DOI: https://doi.org/10.1016/j.jmatprotec.2007.04.045.
- [26] Kulekci, M.K. (2008). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology. 39(9-10), 851-865. DOI: https://doi.org/10.1007/s00170-007-1279-2.
- [27] Czerwinski, F. (2014). Controlling the ignition and flammability of magnesium for aerospace applications. Corrosion Science. 86, 1-16. DOI: 10.1016/j.corsci.2014.04.047.
- [28] Chen, H., Liu, J. & Huang, W. (2007). Characterization of the protective surface films formed on molten magnesium in air/HFC-134a atmospheres. Materials Characterization. 58(1), 51-58. DOI: https://doi.org/10.1016/ j.matchar.2006.03.012.
- [29] Wang, J.L., Xu, J.K., Hopkins, C., Chow, D.H.K. & Qin, L. (2020). Biodegradable magnesium-based implants in orthopedics- A general review and perspectives. Advanced Science. 7(8). DOI: https://doi.org/10.1002/advs.201902443.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae235425-4ea2-403a-b923-d5917f11bf09