PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing of the piezo-optic interaction geometry in SrB4O7 crystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimal geometries of the piezo-optic interaction are determined for SrB4O7 crystals by the extreme surfaces method. The goal functions of optimization are the change of optical path length and optical path difference, normalized on mechanical stress and crystal thickness, and the parameters of optimization are the spherical angles determining the directions of the light beam propagation and the uniaxial pressure action. It is shown that the maximal changes of optical path length for the orthogonal polarized waves are equal to 2.09 or 1.65 B (1 B = 1 brewster = 10–12 m2/N) and the maximal change of optical path difference is equal to 2.22 B respectively in transversal geometry of the piezo-optic interaction (for λ =633nm and T =20ºC).
Czasopismo
Rocznik
Strony
447--459
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Institute of Telecommunications, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, 12 Bandery St., Lviv, 79013, Ukraine
  • Karpenko Physico-Mechanical Institute of NAS of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
autor
  • Karpenko Physico-Mechanical Institute of NAS of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
  • Institute of Telecommunications, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, 12 Bandery St., Lviv, 79013, Ukraine
Bibliografia
  • [1]SPILLMAN W.B., JR., Multimode fiber-optic pressure sensor based on the photoelastic effect, Optics Letters 7(8), 1982, pp. 388–390.
  • [2]TRAINER N.N., Photoelastic measuring transducer and accelerometer based thereon, Patent 4.648.273 US, March 10, 1987.
  • [3]ANDRUSHCHAK A.S., MYTSYK B.G., OSYKA B.V., Polarized-optical pressure meter, Devices and Technique of Experiment, No. 3, 1990, p. 241 (in Russian).
  • [4]BAOLIANG WANG, Linear birefringence measurement instrument using two photoelastic modulators, Optical Engineering 41(5), 2002, pp. 981–987.
  • [5]XIA S., MELLO M., Phase-multiplied photoelastic and series interferometer arrangement for full-field stress measurement in single crystals, Experimental Mechanics 51(4), 2011, pp. 653–666.
  • [6]PATEL D., VEERASUBRAMANIAN V., GHOSH S., SAMANI A., QIUHANG ZHONG, PLANT D.V., High-speed compact silicon photonic Michelson interferometric modulator, Optics Express 22(22), 2014, pp. 26788–26802.
  • [7]MYTSYK B.G., DEM’YANYSHYN N.M., Piezo-optic surfaces of lithium niobate crystals, Crystallogra- phy Reports 51(4), 2006, pp. 653–660.
  • [8]VLOKH O.G., MYTSYK B.G., ANDRUSHCHAK A.S., PRYRIZ YA.V., Spatial distribution of piezoinduced change in the optical pathlength in lithium niobate crystals, Crystallography Reports 45(1), 2000, pp. 138–144.
  • [9]ANDRUSHCHAK A.S., MYTSYK B.G., LYUBYCH O.V., Piezo-optic indicative surfaces in lithium niobate crystals, Ukrainskii Fizicheskii Zhurnal 37(8), 1992, pp. 1217–1224, (in Ukrainian).
  • [10]DEMYANYSHYN N.M., MYTSYK B.G., ANDRUSHCHAK A.S., YURKEVYCH O.V., Anisotropy of the electro-optic effect in magnesium-doped LiNbO3 crystals, Crystallography Reports 54(2), 2009, pp. 306–312.
  • [11] ANDRUSHCHAK A.S., MYTSYK B.G., DEMYANYSHYN N.M., KAIDAN M.V., YURKEVYCH O.V., DUMYCH S.S., KITYK A.V., SCHRANZ W., Spatial anisotropy of linear electro-optic effect in crystal materials: II. Indicative surfaces as efficient tool for electro-optic coupling optimization in LiNbO3, Optics and Lasers in Engineering 47(1), 2009, pp. 24–30.
  • [12] ANDRUSHCHAK A.S., CHERNYHIVSKY E.M., GOTRA Z.YU., KAIDAN M.V., KITYK A.V., ANDRUSHCHAK N.A., MAKSYMYUK T.A., MYTSYK B.G., SCHRANZ W., Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals, Journal of Applied Physics 108(10), 2010, article 103118.
  • [13]KAIDAN M.V., TYBINKA B.V., ZADOROZHNA A.V., ANDRUSHCHAK A.S., SCHRANZ W., SAHRAOUI B., KITYK A.V., The indicative surfaces of photoelastic effect in Cs2HgCl4 biaxial crystals, Optical Materials 29(5), 2007, pp. 475–480.
  • [14]BURYY O.A., ANDRUSHCHAK A.S., KUSHNIR O.S., UBIZSKII S.B., VYNNYK D.M., YURKEVYCH O.V., LARCHENKO A.V., CHABAN K.O., GOTRA O.Z., KITYK A.V., Method of extreme surfaces for optimizing geometry of acousto-optic interactions in crystalline materials: example of LiNbO3 crystals, Journal of Applied Physics 113(8), 2013, article 083103.
  • [15]FENG PAN, GUANGQIU SHEN, RUJI WANG, XIAOQING WANG, DEZHONG SHEN, Growth, characterization and nonlinear optical properties of SrB4O7 crystals, Journal of Crystal Growth 241(1–2), 2002, pp. 108–114.
  • [16]VLOKH O.G., KITYK A.V., MOKRY O.M., GRYBYK V.G., Pressure–temperature phase diagram of (N(CH3 )4 )2CuCl4 crystals birefringent and elastic properties, Physica Status Solidi (A) 116(1), 1989, pp. 287–293.
  • [17]FURTAK J., CZAPLA Z., KITYK A.V., Ultrasonic studies of ferroelectric phase transition in Gly-H3PO3 crystals, Zeitschrift für Naturforschung A 52(11), 1997, pp. 778–782.
  • [18]KAIDAN M.V., ZADOROZHNA A.V., ANDRUSHCHAK A.S., KITYK A.V., Cs2HgCl4 crystals as a new material for acoustooptical applications, Optical Materials 22(3), 2003, pp. 263–268.
  • [19]KAIDAN M.V., ZADOROZHNA A.V., ANDRUSHCHAK A.S., KITYK A.V., Photoelastic and acousto-optical properties of Cs2 HgCl4 crystals, Applied Optics 41(25), 2002, pp. 5341–5345.
  • [20]PRESS W.H., FLANNERY B.P., TEUKOLSKY S.A., VETTERLING W.T., Numerical Recipes in Pascal, 3rd Ed., Cambridge University Press, Cambridge, 2007, pp. 801–803.
  • [21]DEMYANYSHYN N.M., MYTSYK B.G., SAKHARUK O.M., Elasto-optic effect anisotropy in strontium borate crystals, Applied Optics 53(8), 2014, pp. 1620–1628.
  • [22]MYTSYK B., Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. I. Methodology for the studies of piezo-optical effect, Ukrainian Journal of Physical Optics 4(1), 2003, pp. 1–26.
  • [23]SIROTIN YU., SHASKOLSKAYA M., Fundamentals of Crystal Physics, “Mir”, Moskow, 1982, (in Russian).
  • [24]MYTSYK B., DEMYANYSHYN N., MARTYNYUK-LOTOTSKA I., VLOKH R., Piezooptic, photoelastic and acousto-optic properties of SrB4O7 crystals, Applied Optics 50(21), 2011, pp. 3889–3895.
  • [25]MARTYNYUK-LOTOTSKA I., DUDOK T., MYS O., VLOKH R., Elastic, piezooptic and acoustooptic properties of SrB4O7 and PbB4O7 crystals, Optical Materials 31(4), 2009, pp. 660–667.
  • [26]MYTSYK B.G., ANDRUSHCHAK A.S., DEMYANYSHYN N.M., KOST’ YA. P., KITYK A.V., MANDRACCI P., SCHRANZ W., Piezo-optic coefficients of MgO-doped LiNbO3 crystals, Applied Optics 48(10), 2009, pp. 1904–1911.
  • [27]OSELEDCHIK YU.S., PROSVIRNIN A.L., PISAREVSKIY A.I., STARSHENKO V.V., OSADCHUK V.V., BELOKRYS S.P., SVITANKO N.V., KOROL A.S., KRIKUNOV S.A., SELEVICH A.F., New nonlinear optical crystals: strontium and lead tetraborates, Optical Materials 4(6), 1995, pp. 669–674.
  • [28]ARIZMENDI L., Photonic applications of lithium niobate crystals, Physica Status Solidi (A) 201(2), 2004, pp. 253–283.
  • [29] SUGAK D.YU., MATKOVSKII A.O., SOLSKII I.M., KOPKO B.M., OLIINYK V.YA., STEFANSKII I.V., GABA V.M., GRABOVSKII V.V., ZARITSKII I.M., RAKITINA L.G., Growth and optical properties of LiNbO3 :MgO single crystals, Crystal Research and Technology 32(6), 1997, pp. 805–811.
  • [30]SHASKOLSKAYA M.P., [Ed.], Acoustic Crystals. Reference-Book, Nauka, Moskow, 1982, (in Russian).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae22113d-73c6-4177-bdf7-b8452f4027df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.